• Title/Summary/Keyword: Kissinger method

Search Result 74, Processing Time 0.026 seconds

Study on Cure Behavior of Low Temperature and Fast Cure Epoxy with Mercaptan Hardener (Mercaptan 경화제에 의한 저온속경화 에폭시의 경화거동에 관한 연구)

  • Eom, Se Yeon;Seo, Sang Bum;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.240-248
    • /
    • 2013
  • The curing behaviors of diglycidyl ether of bisphenol A (DGEBA) with mercaptan hardener were studied by the comparison with amine-adduct type hardener. Curing behaviors were evaluated by DSC at dynamic and isothermal conditions. In the DSC, the dynamic experiments were based on the method of Kissinger's equation, and the isothermal experiments were fitted to the Kamal's kinetic model. Activation energy of epoxy/amine-adduct type hardener was ca. 40 kcal/mol. As the functional group of mercaptan hardener, -SH increased, on epoxy/mercaptan hardeners, the activation energies decreased from 28 to 19 kcal/mol. Epoxy/amine-adduct type hardener was initiated at $90^{\circ}C$ or higher. However, epoxy/mercaptan hardeners reduced the initiation temperatures below $80^{\circ}C$ and shortened the durations of curing reaction within 10 min. We found out that the reaction kinetics of epoxy with mercaptan hardener followed the autocatalytic reaction models, and the maximum reaction rates were shown at the conversions of 20~40%.

Curing Behavior and Morphology of DGEBA/NMA/2,4,6-tris(dimethylaminomethyl) phenol System (DGEBA/NMA/2,4,6-tris(dimethylaminomehyl)phenol 시스템의 경화거동 및 Morphology)

  • 김민영;김성호;최영선;김원호;황병선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.118-121
    • /
    • 2001
  • The investigation of cure kinetics and morphology studies on DGEBA/PEI/Anhydride system were performed by differential scanning calorimetry and scanning electron microscopy. Autocatalystic kinetics model was applied by isothermal scan test. Ozawa method and Kissinger method was applied by temperature scan. Activation energy was 95kJ/mol for neat DGEBA/NMA, 120kJ/mol for DGEBA/PEI(10p.h.r.)/NMA. The generation of secondary phase of PEI was observed and its size was grown up by increasing contents of PEI.

  • PDF

A Study on Annealing of Fe-Si-B-Ni Amorphous Alloy (Fe-Si-B-Ni 비정질 합금의 어닐링에 관한 연구)

  • Kim, Shin-Woo;Song, Yong-Sul;Baek, Mu-Hum
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.721-724
    • /
    • 2003
  • A Fe-Si-B-Ni amorphous alloy manufactured by one roll melt-spinning method showed the crystallization temperature difference of a maximum $10^{\circ}C$ according to each lot. This temperature difference had a considerable influence on the annealing process to be conducted for obtaining the proper inductance of the alloy. The proper annealing temperature of the alloy was $480^{\circ}C$ and the annealing time increased as the crystallization temperature increased. The activation energy measured by Kissinger method increased as the crystallization temperature increased. Therefore, the annealing process must be adjusted by the crystallization temperature difference of the amorphous alloy.

A Kinetic Studies of the Pyrolysis of Waste Plastic Based on the Thermogravimetic Analyses (폐플라스틱의 열분해 시 열중량 분석 및 동역학 연구)

  • Jung, Won Hak;Hwang, Hyeon Uk;Kim, Myung Gyun;Sun, JianFeng;Mutua, Nzioka Antony;Kim, Young Ju
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.15-21
    • /
    • 2015
  • Waste plastic differs in its speed of combustion owing to its variety in composition as well as kinds of plastic. This study is aimed at examining the thermal weight analysis and determination of its kinetics in order to derive the design element in pyrolysis of RPF (Refused Plastic Fuel) as the plastic solid fuel. Based on the result of TGA (Thermogravimetric analysis), kinetic characteristics were analyzed by using Kissinger method which are the most common method for obtaining activation energy, and experimental conditions of TGA were set as follows: in a nitrogen atmosphere, gas flow rate of 20 ml/min, heating rate of $5{\sim}50^{\circ}C/min$, and maximum hottest temperature of $800^{\circ}C$. The method used for determining the property of waste plastic when thermally decomposed was thought feasible as the basic data in deciding the performance, design, and optimal operating condition of the reactor in the actual reactor.

Synthesis and Properties of Fe-Ni Nano-sized Powders using Metal Nitrates (금속질산염을 이용한 Fe-Ni 나노분말의 제조 및 특성)

  • Joo, Min-Hee;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.191-195
    • /
    • 2009
  • The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate have been investigated. $Fe_2O_3$/NiO composite powders were prepared by chemical solution mixing of Fe- and Ni-nitrate and calcination at $350^{\circ}C$ for 2 h. The calcined powders were hydrogen-reduced at $350^{\circ}C$ for 30 min. The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate were analyzed by TG in air and hydrogen atmosphere, respectively. TG and XRD analysis for hydrogen-reduced powders revealed that the $Fe_2O_3$/NiO phase transformed to $FeNi_3$ phase at the temperature of $350^{\circ}$. The activation energy for the hydrogen reduction, evaluated by Kissinger method, was measured as 83.0 kJ/mol.

The Crystallization Kinetics of CaO-MgO-Al2O3-SiO2 Glass System Using Thermal Analysis (열분석을 이용한 CaO-MgO-Al$_2$O$_3$-SiO$_2$의 결정화 기구의 연구)

  • 김형순
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.9-14
    • /
    • 1992
  • Some of non-isothermal analysis methods are applied to CaO-MgO-Al2O3-SiO2 glass system to find the kinetics parameters of crystallisation, activation energy, Avrami component and frequency factor. The results using the non-isothermal analysis were compared to that of microstructure experiment. Analysis of the result has enabled to some methods to be to recommend as being the most appropriate equation to use in a glass system. It was shown that in the thermal analysis using the non-isothermal method of Kissinger, Augis-Bennett, Bansal, and Marotta, the calculation of activation energy is not much different, while Avrami component and frequency factor are different from applied each methods.

  • PDF

Effect of CaO Addition on Age Hardening Behavior of AZ91 Alloy (AZ91 합금의 시효경화 거동에 미치는 CaO 첨가의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.193-198
    • /
    • 2011
  • Effect of CaO addition on age hardening response has been studied by using optical microscopy, scanning electron microscopy and differential thermal analysis in AZ91 and CaO-containing ECO-AZ91 alloys. After solution treatment, the ${\beta}$($Mg_{17}Al_{12}$) phase formed during solidification mostly disappeared in the microstructure in the AZ91 alloy, whereas numerous ${\beta}$ precipitates containing Ca were still observed in the ECO-AZ91 alloy due to its enhanced thermal stability. The ECO-AZ91 alloy showed the delayed peak aging time and higher peak hardness compared with those of the AZ91 alloy. The activation energies for ${\beta}$ precipitation calculated by means of Kissinger method increased from 71.4 to 85.6 kJ/mole by the addition of CaO, which implies that CaO plays a role in reducing ${\beta}$ precipitation rate in the AZ91 alloy.

Thermal Characteristics of Polypropylene in Combustion Reaction Using TGA (TGA를 이용한 폴리프로필렌의 연소반응에서의 열적 특성 연구)

  • Kang, Yun-Jin;Seo, Su-Eun;Seo, Gyu-Suk;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.111-120
    • /
    • 2008
  • The combustion reaction of polypropylene was investigated using a thermogravimetric technique under an air atmosphere condition at several heating rates from 10 to $50^{\circ}C/min$. To obtain information on the kinetic parameters, the dynamic thermogravimetric analysis curve and its derivative were analyzed by a variety of analytical methods such as Kissinger, Friedman, Freeman-Carroll, Chatterjee-Conrad, Ozawa and Coats-Redfern methods. The comparative works for the kinetic results obtained from various methods should be performed to determine the kinetic parameters, because there are tremendous differences in the calculated kinetic parameters depending upon the mathematical method taken in the analysis.

Study on the Thermal Degradation of Poly(n-bulyl methacrylate) (Poly(n-butyl methacrylate)의 열분해에 관한 연구)

  • Kwak, Ki-Chul;Seul, Soo-Duk;Sohn, Jin-Eon
    • Elastomers and Composites
    • /
    • v.23 no.3
    • /
    • pp.213-222
    • /
    • 1988
  • The thermal decomposition of poly(n-butyl methacrylate)(Pn-BMA) was studied using a dynamic and isothermal thermogravimetry in nitrogen gas with 50ml/min at several heating rates from 1 to $20^{\circ}C/min$, and at several heating temperature from 320 to $370^{\circ}C$. The mathematical techniques used for calculation of activation energy were Kissinger, Anderson, Chatterjee-Conrad, Friedman, Fuoss, Ozawa and isolthermal method. The range of activation energies obtained using the several techniques was between 43 and 51Kcal/mol except Chatterjee-Conrad and this range agreed with each other very well. The thermal degradation of Pn-BMA was considered to be carried out by main chain scission.

  • PDF

Cure Characteristics of Metal Particle Filled DGEBA/MDA/SN/ zeolite Composite System for EMI Shielding

  • Cho, Young-Shin;Lee, Hong-Ki;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.548-551
    • /
    • 1999
  • The cure characteristics of metal particle filled DGEBA/MDA/SN/ zeolite epoxy resin composite system for EMI shielding were investigated by dynamic DSC run method and FT-lR spectroscopy. As the heating rate increased, the peak temperature on dynamic DSC curve increased because of the rapid cure reaction. From the straight line of the Kissinger plot, the curing reaction activation energy and pre-exponential factor could be obtained. As the post-curing time at 15$0^{\circ}C$ increased, the glass increased the glass transition temperature or the thermal stability increased. When the post curing time is too long, the system filled with metallic Al particle can be thermally oxidized by the catalytic reaction of metal filler and the thermal stability of the composite for the EMI shielding application may be decreased.

  • PDF