• Title/Summary/Keyword: Knuckle

Search Result 117, Processing Time 0.026 seconds

Structural Optimization of the Knuckle Crane Installed in Truck (트럭 장착용 너클크레인의 경량화를 위한 구조)

  • Lim, Hun-Bong;Shin, Moon-Kyun;Yang, Hyun-Ik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.344-348
    • /
    • 2012
  • The knuckle crane design in Korea has been performed by assuming a cantilever beam type structure and numerically analyzing design data and finally improving the stiffness by replacing material. In our study, a complete finite element model of the knuckle crane is constructed and finite element analysis is conducted using Optistruct. Structural optimization to reduce the weight of the knuckle crane is processed by applying maximum loading condition at the largest radius of motion, which is the worst case of loading condition. As the results, existing over stiff design in a knuckle crane is corrected to meet a desired design limit and overall weight is reduced, which eventually leads to a reduction of $CO_2$ emission.

Development of Force Sensors for the Fingers of an Intelligent Robot's Hand (지능형 로봇손을 위한 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.127-133
    • /
    • 2014
  • This paper describes a design and manufacture of a two-axis force sensor and a single-axis force sensor for the fingers of an intelligent robot's hand. The robot's finger is composed of a two-axis force sensor, a first knuckle, a single-axis force sensor, a second knuckle, a spring, a motor of first knuckle, a motor of second knuckle, and so on. The two-axis force sensor attached to the first knuckle and the single-axis force sensor attached to the second knuckle were designed and manufactured, and the characteristics test of two sensors was carried out. As a test results, the interference error of the two-axis force sensor was less than 0.68%, the repeatability error of each sensor was less than 0.02%, and then the non-linearity was less than 0.03%. It is thought that the sensors can be used for the fingers of the intelligent robot's hand for rehabilitation exercise of finger patients.

Design of the Hydraulic Rotor Block Curvature for a Knuckle Crane According to the Contact Angle (접촉각에 따른 너클 크레인용 유압로터블록의 만곡부 설계)

  • Lee J.M.;Han G.J.;Han D.S.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.377-378
    • /
    • 2006
  • The knuckle crane mainly consists of six parts such as swing, main boom, outer boom, extension boom, hydraulic rotor and knuckle. And the hydraulic rotor is connected at the end of extension boom has rotor block, rotor body, rotor vane. In this study, we carried out kinematics analysis of the hydraulic rotor block curvature for a knuckle crane. Then, we showed the formula to establish the radius of a circumscribed circle to form the rotor block curvature. Third, we analyzed the stress at each point of the rotor block curvature according to the contact angle. From the result of this study, we designed the rotor block curvature with a proper contact angle for a knuckle crane to guarantee the stability of hydraulic rotor.

  • PDF

Durability Performance Evaluation of an Aluminum Knuckle using Virtual Testing Method (가상시험법을 이용한 알루미늄 너클의 내구수명 평가)

  • Ko, Han-Young;Choi, Gyoo-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • Durability performance evaluation technology using Virtual Testing Method is a new concept of a vehicle design, which can reduce the automotive components design period and cost. In this paper, the fatigue life of an aluminum knuckle of a passenger car is evaluated using virtual testing method. The flexible multibody dynamic model of a front half car module is generated and solved with service loads which are measured from Belgian roads. Using a multibody dynamic analysis software, the flexible multibody dynamic simulation of a half car model is carried out and the dynamic stress profile of an aluminum knuckle is acquired. The stress profile is exported to a fatigue analysis software and durability performance of an aluminum knuckle is evaluated.

Structural Strength Analysis of ATV Knuckle (ATV 너클의 구조강도 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.137-144
    • /
    • 2013
  • This study analyzes structural analysis with fatigue and natural frequency on ATV knuckle. The maximum equivalent stresses are happened at the end of knuckle in case of model 1, 2 and 3. As these stresses are below the allowable stress, these models can be stable structurally. The fatigue damage possibility at model 1 becomes more than model 2 and 3. Model 2 or 3 has more durability than model 1 at fatigue. As the resonances are happened at the frequency more than 2000 Hz in case of model 1, 2 and 3, there is no resonance possibilities at real driving. Prevention against damage and durability prediction on automotive chassis parts can be effectively improved by applying this study result on knuckle and improving structural strength.

Light-Weight Design of Automotive Knuckle by Using CAE (Computer Aided Engineering) (CAE 해석을 이용한 자동차용 AA6061 Knuckle의 경량화 설계)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.663-668
    • /
    • 2016
  • Increasing fuel economy and reducing air pollution have been unavoidable issues in the development of new cars, and one of the important methods is decreasing vehicle weight. Weight can be reduced by using lightweight materials such as aluminum alloy. Dynamic stiffness analysis was performed and compared for different materials for the knuckle for a car. The dynamic stiffness of 6061 aluminum alloy was about 30% higher than that of FCD600 cast iron. Usually, materials that have high dynamic stiffness show excellent vibration resistance because the dynamic stiffness can affect the vibration characteristics. In order to design a lighter and more reliable chassis component using 6061 aluminum alloy (AA6061-T6), a new knuckle shape is suggested by adding section ribs to an existing knuckle model. The effect of each design change on the reliability and component weight was investigated using computer aided engineering (CAE).

Study on Structural Integrity and Dynamic Characteristics of Knuckle Parts of KTX Anti-Roll Bar (KTX 고속열차 안티롤바 너클부의 동특성 및 구조 안전성 평가)

  • Jeon, Kwang Woo;Shin, Kwang Bok;Kim, Jin Woo;Jeong, Yeon Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1035-1041
    • /
    • 2013
  • To evaluate the structural integrity and dynamic characteristic of the knuckle part of a KTX anti-roll bar, an experimental and a numerical approach were used in this study. In the experimental approach, the acceleration and strain data for the knuckle parts of the KTX and KTX-SANCHUN anti-roll bar were respectively measured to evaluate and compare its structural dynamic characteristics under the operating environments of the Honam line. In the numerical approach, the evaluation of its structural integrity was conducted using LS-DYNA 3D, and then, the reliability of the finite element model used was ensured by a comparative evaluation with the experiment. The numerical results showed that the stress and velocity field of the knuckle part composed of a layered structure of a thin steel plate and rubber were more moderate than those of the knuckle part made of only a thick steel block owing to the reduction of relative contact between the knuckle and the connecting rod. It was found that the knuckle part made of a thin steel plate and rubber was recommended as the best solution to improve its structural integrity resulting from the elastic behavior of the KTX anti-roll bar being enabled under a repeating external force.

Finger-Knuckle-Print Verification Using Vector Similarity Matching of Keypoints (특징점간의 벡터 유사도 정합을 이용한 손가락 관절문 인증)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1057-1066
    • /
    • 2013
  • Personal verification using finger-knuckle-print(FKP) uses lines and creases at the finger-knuckle area, so the orientation information of texture is an important feature. In this paper, we propose an effective FKP verification method which extracts keypoints using SIFT algorithm and matches the keypoints by vector similarity. The vector is defined as a direction vector which connects a keypoint extracted from a query image and a corresponding keypoint extracted from a reference image. Since the direction vector is created by a pair of local keypoints, the direction vector itself represents only a local feature. However, it has an advantage of expanding a local feature to a global feature by comparing the vector similarity among vectors in two images. The experimental results show that the proposed method is superior to the previous methods based on orientation codes.

Shape Optimization Design of the Knuckle using the Orthogonal Array and the Finite Element Analysis (직교배열표와 유한요소해석을 이용한 너클의 형상최적설계)

  • 박영철;이권희;이동화;이강영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.138-144
    • /
    • 2003
  • Recently, the weight reduction of vehicle influences its environment problems and performances. It is a trend that a lot of parts have been currently changed to an aluminum alloy from steel materials. In this study, the shape optimization using an orthogonal array is performed to determine the design of the knuckle which is a part of suspension system. With the material of the weight reduction was achieved by satisfying the constraints of a strength requirement. The orthogonal array of $L_{18}$ is introduced to find the optimum design variables that considers the shape of the knuckle. The characteristic function composed of the objective and the construct is defined to the feasibility. Comparing to the weight of the initial design with steel materials that of optimum design with aluminum alloy material is reduced by 60%.

Topology Optimization for a Knuckle Using Design Space Adjustment and Refinement (설계공간 조정과 세분화를 이용한 너클의 위상 최적설계)

  • Yu Yong-Gyun;Kwak Byung-Man;Jang In-Gwun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.595-601
    • /
    • 2006
  • Design space optimization using design space adjustment and refinement is used to optimize a knuckle in the suspension system of an automobile. This approach is a new efficient method for large-scale topology optimization by virtue of two reasons. First, design space adjustment including design space expansion and reduction is suitable for large-scale problems. Second, the design space refinement can be done globally or locally where and when necessary and thus is very effective in obtaining a target resolution with much less number of elements. Compliance minimization for a knuckle is considered with a realistic working condition to show the effectiveness and superiority of the new approach.