• Title/Summary/Keyword: Krull monoid

Search Result 5, Processing Time 0.02 seconds

A CHARACTERIZATION OF CLASS GROUPS VIA SETS OF LENGTHS

  • Geroldinger, Alfred;Schmid, Wolfgang Alexander
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.869-915
    • /
    • 2019
  • Let H be a Krull monoid with class group G such that every class contains a prime divisor. Then every nonunit $a{\in}H$ can be written as a finite product of irreducible elements. If $a=u_1{\cdot}\;{\ldots}\;{\cdot}u_k$ with irreducibles $u_1,{\ldots},u_k{\in}H$, then k is called the length of the factorization and the set L(a) of all possible k is the set of lengths of a. It is well-known that the system ${\mathcal{L}}(H)=\{{\mathcal{L}}(a){\mid}a{\in}H\}$ depends only on the class group G. We study the inverse question asking whether the system ${\mathcal{L}}(H)$ is characteristic for the class group. Let H' be a further Krull monoid with class group G' such that every class contains a prime divisor and suppose that ${\mathcal{L}}(H)={\mathcal{L}}(H^{\prime})$. We show that, if one of the groups G and G' is finite and has rank at most two, then G and G' are isomorphic (apart from two well-known exceptions).

Some Analogues of a Result of Vasconcelos

  • DOBBS, DAVID EARL;SHAPIRO, JAY ALLEN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.817-826
    • /
    • 2015
  • Let R be a commutative ring with total quotient ring K. Each monomorphic R-module endomorphism of a cyclic R-module is an isomorphism if and only if R has Krull dimension 0. Each monomorphic R-module endomorphism of R is an isomorphism if and only if R = K. We say that R has property (${\star}$) if for each nonzero element $a{\in}R$, each monomorphic R-module endomorphism of R/Ra is an isomorphism. If R has property (${\star}$), then each nonzero principal prime ideal of R is a maximal ideal, but the converse is false, even for integral domains of Krull dimension 2. An integral domain R has property (${\star}$) if and only if R has no R-sequence of length 2; the "if" assertion fails in general for non-domain rings R. Each treed domain has property (${\star}$), but the converse is false.

ON THE DIVISOR-CLASS GROUP OF MONADIC SUBMONOIDS OF RINGS OF INTEGER-VALUED POLYNOMIALS

  • Reinhart, Andreas
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.233-260
    • /
    • 2017
  • Let R be a factorial domain. In this work we investigate the connections between the arithmetic of Int(R) (i.e., the ring of integer-valued polynomials over R) and its monadic submonoids (i.e., monoids of the form {$g{\in}Int(R){\mid}g{\mid}_{Int(R)}f^k$ for some $k{\in}{\mathbb{N}}_0$} for some nonzero $f{\in}Int(R)$). Since every monadic submonoid of Int(R) is a Krull monoid it is possible to describe the arithmetic of these monoids in terms of their divisor-class group. We give an explicit description of these divisor-class groups in several situations and provide a few techniques that can be used to determine them. As an application we show that there are strong connections between Int(R) and its monadic submonoids. If $R={\mathbb{Z}}$ or more generally if R has sufficiently many "nice" atoms, then we prove that the infinitude of the elasticity and the tame degree of Int(R) can be explained by using the structure of monadic submonoids of Int(R).

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.