• Title/Summary/Keyword: Krull ring

Search Result 37, Processing Time 0.024 seconds

CHARACTERIZATIONS OF A KRULL RING R[X]

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.543-549
    • /
    • 2001
  • We show that R[X] is a Krull (Resp. factorial) ring if and only if R is a normal Krull (resp, factorial) ring with a finite number of minimal prime ideals if and only if R is a Krull (resp. factorial) ring with a finite number of minimal prime ideals and R(sub)M is an integral domain for every maximal ideal M of R. As a corollary, we have that if R[X] is a Krull (resp. factorial) ring and if D is a Krull (resp. factorial) overring of R, then D[X] is a Krull (resp. factorial) ring.

  • PDF

PRIME FACTORIZATION OF IDEALS IN COMMUTATIVE RINGS, WITH A FOCUS ON KRULL RINGS

  • Gyu Whan Chang;Jun Seok Oh
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.407-464
    • /
    • 2023
  • Let R be a commutative ring with identity. The structure theorem says that R is a PIR (resp., UFR, general ZPI-ring, π-ring) if and only if R is a finite direct product of PIDs (resp., UFDs, Dedekind domains, π-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations v or t as follows: An integral domain R is a Krull domain if and only if every nonzero proper principal ideal of R can be written as a finite v- or t-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation u on R, so that R is a general Krull ring if and only if every proper principal ideal of R can be written as a finite u-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.

EVERY ABELIAN GROUP IS THE CLASS GROUP OF A RING OF KRULL TYPE

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.149-171
    • /
    • 2021
  • Let Cl(A) denote the class group of an arbitrary integral domain A introduced by Bouvier in 1982. Then Cl(A) is the ideal class (resp., divisor class) group of A if A is a Dedekind or a Prüfer (resp., Krull) domain. Let G be an abelian group. In this paper, we show that there is a ring of Krull type D such that Cl(D) = G but D is not a Krull domain. We then use this ring to construct a Prüfer ring of Krull type E such that Cl(E) = G but E is not a Dedekind domain. This is a generalization of Claborn's result that every abelian group is the ideal class group of a Dedekind domain.

ON 𝜙-PSEUDO-KRULL RINGS

  • El Khalfi, Abdelhaq;Kim, Hwankoo;Mahdou, Najib
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1095-1106
    • /
    • 2020
  • The purpose of this paper is to introduce a new class of rings that is closely related to the class of pseudo-Krull domains. Let 𝓗 = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. Let R ∈ 𝓗 be a ring with total quotient ring T(R) and define 𝜙 : T(R) → RNil(R) by ${\phi}({\frac{a}{b}})={\frac{a}{b}}$ for any a ∈ R and any regular element b of R. Then 𝜙 is a ring homomorphism from T(R) into RNil(R) and 𝜙 restricted to R is also a ring homomorphism from R into RNil(R) given by ${\phi}(x)={\frac{x}{1}}$ for every x ∈ R. We say that R is a 𝜙-pseudo-Krull ring if 𝜙(R) = ∩ Ri, where each Ri is a nonnil-Noetherian 𝜙-pseudo valuation overring of 𝜙(R) and for every non-nilpotent element x ∈ R, 𝜙(x) is a unit in all but finitely many Ri. We show that the theories of 𝜙-pseudo Krull rings resemble those of pseudo-Krull domains.

ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING

  • Moghimi, Hosein Fazaeli;Naghani, Sadegh Rahimi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1225-1236
    • /
    • 2016
  • Let R be a commutative ring with $1{\neq}0$ and n a positive integer. In this article, we introduce the n-Krull dimension of R, denoted $dim_n\;R$, which is the supremum of the lengths of chains of n-absorbing ideals of R. We study the n-Krull dimension in several classes of commutative rings. For example, the n-Krull dimension of an Artinian ring is finite for every positive integer n. In particular, if R is an Artinian ring with k maximal ideals and l(R) is the length of a composition series for R, then $dim_n\;R=l(R)-k$ for some positive integer n. It is proved that a Noetherian domain R is a Dedekind domain if and only if $dim_n\;R=n$ for every positive integer n if and only if $dim_2\;R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by n-absorbing ideals for some n > 1.

ON GRADED KRULL OVERRINGS OF A GRADED NOETHERIAN DOMAIN

  • Lee, Eun-Kyung;Park, Mi-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.205-211
    • /
    • 2012
  • Let R be a graded Noetherian domain and A a graded Krull overring of R. We show that if h-dim $R\leq2$, then A is a graded Noetherian domain with h-dim $A\leq2$. This is a generalization of the well-know theorem that a Krull overring of a Noetherian domain with dimension $\leq2$ is also a Noetherian domain with dimension $\leq2$.

ON GENERALIZED KRULL POWER SERIES RINGS

  • Le, Thi Ngoc Giau;Phan, Thanh Toan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1007-1012
    • /
    • 2018
  • Let R be an integral domain. We prove that the power series ring R[[X]] is a Krull domain if and only if R[[X]] is a generalized Krull domain and t-dim $R{\leq}1$, which improves a well-known result of Paran and Temkin. As a consequence we show that one of the following statements holds: (1) the concepts "Krull domain" and "generalized Krull domain" are the same in power series rings, (2) there exists a non-t-SFT domain R with t-dim R > 1 such that t-dim R[[X]] = 1.

KRULL RING WITH UNIQUE REGULAR MAXIMAL IDEAL

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.115-119
    • /
    • 2007
  • Let R be a Krull ring with the unique regular maximal ideal M. We show that R has a regular prime element and reg-$dimR=1{\Leftrightarrow}R$ is a factorial ring and reg-$dim(R)=1{\Rightarrow}M$ is invertible ${\Leftrightarrow}R{\varsubsetneq}[R:M]{\Leftrightarrow}M$ is divisorial ${\Leftrightarrow}$ reg-$htM=1{\Rightarrow}R$ is a rank one discrete valuation ring. We also show that if M is generated by regular elements, then R is a rank one discrete valuation ring ${\Rightarrow}$ R is a factorial ring and reg-dim(R)=1.

  • PDF

Some Analogues of a Result of Vasconcelos

  • DOBBS, DAVID EARL;SHAPIRO, JAY ALLEN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.817-826
    • /
    • 2015
  • Let R be a commutative ring with total quotient ring K. Each monomorphic R-module endomorphism of a cyclic R-module is an isomorphism if and only if R has Krull dimension 0. Each monomorphic R-module endomorphism of R is an isomorphism if and only if R = K. We say that R has property (${\star}$) if for each nonzero element $a{\in}R$, each monomorphic R-module endomorphism of R/Ra is an isomorphism. If R has property (${\star}$), then each nonzero principal prime ideal of R is a maximal ideal, but the converse is false, even for integral domains of Krull dimension 2. An integral domain R has property (${\star}$) if and only if R has no R-sequence of length 2; the "if" assertion fails in general for non-domain rings R. Each treed domain has property (${\star}$), but the converse is false.

ON v-MAROT MORI RINGS AND C-RINGS

  • Geroldinger, Alfred;Ramacher, Sebastian;Reinhart, Andreas
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • C-domains are defined via class semigroups, and every C-domain is a Mori domain with nonzero conductor whose complete integral closure is a Krull domain with finite class group. In order to extend the concept of C-domains to rings with zero divisors, we study v-Marot rings as generalizations of ordinary Marot rings and investigate their theory of regular divisorial ideals. Based on this we establish a generalization of a result well-known for integral domains. Let R be a v-Marot Mori ring, $\hat{R}$ its complete integral closure, and suppose that the conductor f = (R : $\hat{R}$) is regular. If the residue class ring R/f and the class group C($\hat{R}$) are both finite, then R is a C-ring. Moreover, we study both v-Marot rings and C-rings under various ring extensions.