• Title/Summary/Keyword: LLZO

Search Result 10, Processing Time 0.032 seconds

Fabrication of Solid State Electrolyte Li7La3Zr2O12 thick Film by Tape Casting (테잎캐스팅을 이용한 전고체전해질 Li7La3Zr2O12 후막 제조)

  • Shin, Ran-Hee;Son, Samick;Ryu, Sung-Soo;Kim, Hyung-Tae;Han, Yoon-Soo
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.379-383
    • /
    • 2016
  • A thick film of $Li_7La_3Zr_2O_{12}$ (LLZO) solid-state electrolyte is fabricated using the tape casting process and is compared to a bulk specimen in terms of the density, microstructure, and ion conductivity. The final thickness of LLZO film after sintering is $240{\mu}m$ which is stacked up with four sheets of LLZO green films including polymeric binders. The relative density of the LLZO film is 83%, which is almost the same as that of the bulk specimen. The ion conductivity of a LLZO thick film is $2.81{\times}10^{-4}S/cm$, which is also similar to that of the bulk specimen, $2.54{\times}10^{-4}S/cm$. However, the microstructure shows a large difference in the grain size between the thick film and the bulk specimen. Although the grain boundary area is different between the thick film and the bulk specimen, the fact that both the ion conductivities are very similar means that no secondary phase exists at the grain boundary, which is thought to originate from nonstoichiometry or contamination.

Evaluation of Electrochemical Properties of Amorphous LLZO Solid Electrolyte Through Li2O Co-Sputtering (Li2O Co-Sputtering을 통한 비정질 LLZO 고체전해질의 전기화학 특성 평가)

  • Park, Jun-Seob;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.614-618
    • /
    • 2021
  • As the size of market for electric vehicles and energy storage systems grows, the demand for lithium-ion batteries (LIBs) is increasing. Currently, commercial LIBs are fabricated with liquid electrolytes, which have some safety issues such as low chemical stability, which can cause ignition of fire. As a substitute for liquid electrolytes, solid electrolytes are now being extensively studied. However, solid electrolytes have disadvantages of low ionic conductivity and high resistance at interface between electrode and electrolyte. In this study, Li7La3Zr2O12 (LLZO), one of the best ion conducting materials among oxide based solid electrolytes, is fabricated through RF-sputtering and various electrochemical properties are analyzed. Moreover, the electrochemical properties of LLZO are found to significantly improve with co-sputtered Li2O. An all-solid thin film battery is fabricated by introducing a thin film solid electrolyte and an Li4Ti5O12 (LTO) cathode; resulting electrochemical properties are also analyzed. The LLZO/Li2O (60W) sample shows a very good performance in ionic conductivity of 7.3×10-8 S/cm, with improvement in c-rate and stable cycle performance.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review

  • Cao, Shiyu;Song, Shangbin;Xiang, Xing;Hu, Qing;Zhang, Chi;Xia, Ziwen;Xu, Yinghui;Zha, Wenping;Li, Junyang;Gonzale, Paulina Mercedes;Han, Young-Hwan;Chen, Fei
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.111-129
    • /
    • 2019
  • Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li7La3Zr2O12 (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

Preparation and Characterization of Ta-substituted Li7La3Zr2-xO12 Garnet Solid Electrolyte by Sol-Gel Processing

  • Yoon, Sang A;Oh, Nu Ri;Yoo, Ae Ri;Lee, Hee Gyun;Lee, Hee Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.278-284
    • /
    • 2017
  • In this work, Ta-substituted $Li_7La_3Zr_{2-x}O_{12}$ (LLZTO) powder and pellets with garnet cubic structure were fabricated and characterized by modified and optimized sol-gel synthesis. Ta-substituted LLZO powder with the smallest grain size and pure cubic structure with little pyrochlore phase was obtained by synthesis method in which Li and La sources in propanol solvent were mixed together with Zr and Ta sources in 2-methoxy ethanol. The LLZTO pellets made with the prepared powder showed cubic garnet structure for all conditions when the amount of Li addition was varied from 6.2 to 7.4 mol. All the X-ray peaks of the pyrochlore phase disappeared when the Li addition was increased above 7.0 mol. When the final sintering temperature was varied, the LLZTO pellet had a pyrochlore-mixed cubic phase above $1000^{\circ}C$. However, the surface morphology became much denser when the final sintering temperature was increased. The sol-gel-driven LLZTO pellet with a sintering temperature of $1100^{\circ}C$ showed a lithium ionic conductivity of 0.21 mS/cm when Au was adopted as electrode material for the blocking capacitor. The results of this study suggest that modified sol-gel synthesis is the optimum method to obtain cubic phase of LLZTO powder for highly dense and conductive solid electrolyte ceramics.

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery

  • Chen, Fei;Zhang, Gang;Zhang, Yiluo;Cao, Shiyu;Li, Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.362-368
    • /
    • 2022
  • The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte

  • Lee, Jongkwan;Heo, Kookjin;Song, Young-Woong;Hwang, Dahee;Kim, Min-Young;Jeong, Hyejeong;Shin, Dong-Chan;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.199-207
    • /
    • 2022
  • Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Preparation of a Li7La3Zr1.5Nb0.5O12 Garnet Solid Electrolyte Ceramic by using Sol-gel Powder Synthesis and Hot Pressing and Its Characterization

  • Lee, Hee Chul;Oh, Nu Ri;Yoo, Ae Ri;Kim, Yunsung;Sakamoto, Jeff
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1535-1540
    • /
    • 2018
  • In this study, we prepared and characterized Nb-doped $Li_7La_3Zr_{2-x}O_{12}$ (LLZNO) powder and pellets with a cubic garnet structure by using a modified sol-gel synthesis and hot pressing. LLZNO powder with a very small grain size and cubic structure without secondary phases could be obtained by using a synthesis method in which Li and La sources in a propanol solvent were mixed together with Zr and Nb sources in 2-methoxy ethanol. A pure cubic phase LLZNO pellet could be fabricated from the prepared LLZNO and an additional 6-wt% of $Li_2CO_3$ powder by hot pressing at $1050^{\circ}C$ and 15.8 MPa. The hot-pressed LLZNO pellet with a relative density of 99% exhibited a very dense surface morphology. The total Li ionic conductivity of the hot-pressed LLZNO was $7.4{\times}10^{-4}S/cm$ at room temperature, which is very high level compared to other reported values. The activation energy for ionic conduction was estimated to be 0.40 eV.