• Title/Summary/Keyword: LNG CCS Panel

Search Result 3, Processing Time 0.02 seconds

Structural Strength Assessment of Simplified Mark III CS Plate (단순화된 Mark III 방열판의 구조 강도 평가에 관한 연구)

  • Jeong, Han-Koo;Yang, Young-Soon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.539-543
    • /
    • 2011
  • LNG cargo containment system (CCS) has the primary function of ensuring adequate thermal insulation with keeping natural gas below its boiling point. From the viewpoint of structural design, this LNG CCS can be treated as a laminated composite structure showing complex structural responses under the sloshing load which can be defined as a violent behavior of the liquid contents in cargo tanks due to external forced motions. As LNG CCS type, Mark III containment system from TGZ is considered in this paper and then its structural strength assessment is performed based on a simple higher-order shear deformation theory and maximum stress, maximum strain, Tsai-Wu failure criteria developed for laminated composite plates. The assessment is performed to the initial failure of the Mark III CS plate by investigating failure locations and loads.

  • PDF

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

Evaluation of Thermal Performance and Mechanical Properties in the Cryogenic Environment of Basalt Fiber Reinforced Polyurethane Foam (현무암 섬유 보강 폴리우레탄폼의 열적 성능 및 극저온 환경에서의 기계적 특성 평가)

  • Jeon, Sung-Gyu;Kim, Jeong-Dae;Kim, Hee-Tae;Kim, Jeong-Hyeon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.207-213
    • /
    • 2022
  • LNG CCS which is a special type of cargo hold operated at -163℃ for transporting liquefied LNG is composed of a primary barrier, plywood, insulation panel, secondary barrier, and mastic. Currently, glass fiber is used to reinforce polyurethane foam. In this paper, we evaluated the possibility of replacing glass fiber-reinforced polyurethane foam with basalt fiber-reinforced polyurethane foam. We conducted a thermal conductivity test to confirm thermal performance at room temperature. To evaluate the mechanical properties between basalt and glass-fiber-reinforced polyurethane foam which is fiber content of 5 wt% and 10 wt%, tensile and an impact test was performed repeatedly. All of the tests were performed at room temperature and cryogenic temperature(-163℃) in consideration of the temperature gradient in the LNG CCS. As a result of the thermal conductivity test, the insulating performance of glass fiber reinforced polyurethane foam and basalt fiber reinforced polyurethane foam presented similar results. The tensile test results represent that the strength of basalt fiber-reinforced polyurethane foam is superior to glass fiber at room temperature, and there is a clear difference. However, the strength is similar to each other at cryogenic temperatures. In the impact test, the strength of PUR-B5 is the highest, but in common, the strength decreases as the weight ratio of the two fibers increases. In conclusion, basalt fiber-reinforced polyurethane foam has sufficient potential to replace glass fiber-reinforced polyurethane foam.