• Title/Summary/Keyword: LNG cargo containment system

Search Result 65, Processing Time 0.027 seconds

Structural and Vibrational Characteristics for the Scaffolding System of LNG Cargo Containment (LNG 화물창 비계 시스템의 구조해석 및 진동 특성)

  • Ryu, B.J.;Shin, G.B.;Nahm, Y.E.;Oh, B.J.;Baek, S.G.;Kim, H.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1197-1202
    • /
    • 2007
  • The paper deals with the structural analysis and vibration test for the scaffolding system of LNG cargo containment. The eight-stories scaffolding system has telescopic area, working area, coner area and storage area in real system. In the structural analysis, the maximum displacement and stress of the each floor for the scaffolding system are investigated by finite element method. In the vibrational analysis, the natural frequencies and mode shapes for 8-stories scaffolding system of the LNG cargo containment are investigated. In order to compare theoretical natural frequencies with experimental ones, small size of 2-step scaffolding structure is used, and the theoretical results for natural frequency have a good agreement with experimental ones.

  • PDF

Structural and Vibration Characteristics for the Scaffolding System of LNG Cargo Containment (LNG 화물창 비계 시스템의 구조해석 및 진동 특성)

  • Oh, B.J.;Ryu, B.J.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.546-554
    • /
    • 2010
  • The paper deals with the structural analysis and vibration test for the scaffolding system of LNG cargo containment. The eight-stories scaffolding system has telescopic area, working area, coner area and storage area in real system. In the structural analysis, the maximum displacement and stress of the each floor for the scaffolding system are investigated by finite element method. In the vibrational analysis, the natural frequencies and mode shapes for 8-stories scaffolding system of the LNG cargo containment are investigated. In order to compare theoretical natural frequencies with experimental ones, small size of 2-step scaffolding structure is used, and the theoretical results for natural frequency have a good agreement with experimental ones.

An Assessment of Structure Safety for Basic Insulation Panel of KC-1 LNG Cargo Containment system under Sloshing Load (슬로싱 하중을 받는 한국형 LNG선 화물창(KC-1)의 보냉 판넬에 대한 구조 안전성 평가)

  • Jin, Kyo-Kook;Oh, Byung-Taek;Kim, Young-Kyun;Yoon, Ihn-Soo;Yang, Young-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.85-89
    • /
    • 2013
  • The purpose of the development of KC-1 LNG cargo containment system is reduction in royalty and increase in competitiveness of shipbuilding industry. An assessment of structure safety for LNG cargo containment system under sloshing load due to ship motion has become an important design element. The ideal way is to implement fully interaction of the fluid domain and the cargo containment system. However the irregular sloshing pressure were idealized in the form of a triangular wave for safety assessment because the fluid- structure interaction analysis is taken the extensive computation time and difficult to ensure the accuracy of the results. In this study, the sloshing load was assumed to be a triangular wave with a maximum pressure of 10 bar during 15/1000 seconds. In the analytic results, the basic insulation panel of KC-1 LNG cargo containment system was assessed to be structurally safe for sloshing load.

Optimization of Sheet Arrangement of Membrane Panel in Korean LNG Cargo Containment System (한국형 LNG 화물창 멤브레인의 Sheet 배치 최적화)

  • Kim, Yeong-Su;Ham, Seung-Ho;Park, Kwang-Phil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.109-117
    • /
    • 2022
  • Membrane panels are installed in LNG cargo-hold in order to endure extremely low temperature LNG. Although there are several types of membranes around the world, Korean LNG cargo containment system is developing to accomplish technology independence from the other countries. The membrane panel of Korean LNG cargo containment system is composed of corrugation and flat sheets which are arranged asymmetrically. It is very important to reduce the number of the type of corrugation sheet because a mold is required as much as the type of the corrugation sheet. Therefore, we proposed an optimization method to minimize the type of the corrugation sheet. For this method, the number of pitches, which is the distance between the centers of two corrugation sheets should be minimized. We also developed optimized arrangement procedure of the flats simultaneously. Finally, the developed optimization program is applied to 174K LNG cargo hold, and the minimum pitch size is found.

Rapid response calculation of LNG cargo containment system under sloshing load using wavelet transformation

  • Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.227-245
    • /
    • 2013
  • Reliable strength assessment of the Liquefied Natural Gas (LNG) cargo containment system under the sloshing impact load is very difficult task due to the complexity of the physics involved in, both in terms of the hydrodynamics and structural mechanics. Out of all those complexities, the proper selection of the design sloshing load which is applied to the structural model of the LNG cargo containment system, is one of the most challenging one due to its inherent randomness as well as the statistical analysis which is tightly linked to the design sloshing load selection. In this study, the response based strength assessment procedure of LNG cargo containment system has been developed and proposed as an alternative design methodology. Sloshing pressure time history, measured from the model test, is decomposed into wavelet basis function targeting the minimization of the number of the basis function together with the maximization of the numerical efficiency. Then the response of the structure is obtained using the finite element method under each wavelet basis function of different scale. Finally, the response of the structure under entire sloshing impact time history is rapidly calculated by synthesizing the structural response under wavelet basis function. Through this analysis, more realistic response of the system under sloshing impact pressure can be obtained without missing the details of pressure time history such as rising pattern, oscillation due to air entrapment and decay pattern and so on. The strength assessment of the cargo containment system is then performed based on the statistical analysis of the stress peaks selected out of the obtained stress time history.

Evaluation of the Fatigue Strength and the Mechanical Properties for Cargo Containment System in LNG Ship (LNG선박용 내조시스템 소재의 기계적 특성 및 피로강도 평가)

  • Shim, Hee-Jin;Kim, Min-Tea;Yoon, In-Su;Kim, Yung-Kyun;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1-6
    • /
    • 2007
  • The membrane type LNG(Liquefied Natural Gas) cargo containment system is a special design structure for the large deformation behavior at LNG temperature$(-162^{\circ}C)$. The design of membrane is required great confidence so that membrane can plat role in the tightness of flammable fluid storing. LNG cargo containment is loaded and unloaded LNG between twice and five times in a week. During this process, the membrane has large deformation behavior due to the variation of temperature and pressure to the self weight. In this study, the evaluation of the fatigue strength of membrane is very important to determine the design life of LNG storage tank and to evaluate the mechanical properties at the LNG temperature. Also, in the view point of large deformation, the evaluation method is applied conservatively $\epsilon-N_f$ curve of SUS 304L.

  • PDF

Research of Combined Containment System for Floating LNG (플로팅 엘엔지 복합 화물창 시스템 연구)

  • Kim, Soo-Young;Kim, Sung-Chul;Lee, Dong-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.342-347
    • /
    • 2015
  • Floating LNG is a new concept which is used as LNG regasification/receiving facility and for LNG production/export facility. LNG Floating Production Storage and Offloading(FPSO) concept will put vitality into marginal gas fields which were delayed because of excessive investment cost in the world. LNG Floating Storage Regasification Unit(FSRU) also provides commercially competitive and effective solutions to the areas where onshore infrastructure is not well established. LNG cargo containment system is one of the key functions for FLNG to store produced LNG on a floating structure. This paper presents a new technology related to a LNG containment system; a combined cargo containment system utilizing the advantages of iIndependent tank type and membrane system. Technical advantages have been validated through research work.

Ice Collision Analyses for Membrane Tank Type LNG Carrier

  • Suh, Yong-Suk;Ito, Hisashi;Chun, Sang-Eon;Han, Sang-Min;Choi, Jae-Yeon;Urm, Hang-Sub
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.35-44
    • /
    • 2008
  • As arctic energy resource is attracting public attention, arctic shipping market will also be growing in large as expected to increase in LNG trade from Arctic area to the western countries by shipping. During the voyages through such routes, collision with icebergs may be possible. In the present report, ice collision analyses are carried out from a practical point of view to verify the safety of hull structural strength of LNG carriers equipped with GTT $MKIII^{TM}$ membrane type cargo containment system. From the results of collision analyses and the operation-friendly design concept of no-repairing of cargo containment system, a safe operating envelope against ice collision is proposed for LNG carriers of membrane type cargo containment system. Based on the currently proposed safety criteria, it is concluded that LNG carriers with membrane tank type can operate safely with regard to the integrity of CCS in regions where collision between LNG carrier and iceberg is expected.

Fatigue Analysis of LNG Cargo Containment System Connections in Membrane LNG Carrier

  • Park, Jun-Bum
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.112-124
    • /
    • 2017
  • As an LNG carrier preserves and transports liquefied natural gas under minus $163^{\circ}C$, the cargo tank has to have sufficient hull strength against not only the wave loads but also against loads caused by loading and unloading and thermal expansion to keep the LNG safely. The main insulation types for a CCS are No.96 and Mark III from GTT for the membrane LNG carrier. Particularly, the invar membrane plate in No.96 is very thin and its connections could experience high local stresses owing to such dynamic loads. Therefore, it should be verified whether those connections have sufficient fatigue lives for the purpose of operation and maintenance. This research aims at performing fatigue analysis with 0.1 fatigue damage criteria for 40 years of design life to support new membrane CCS development using proper S-N curves and the associated finite element modeling technique for each connection and then propose a reasonable design methodology.

Sloshing design load prediction of a membrane type LNG cargo containment system with two-row tank arrangement in offshore applications

  • Ryu, Min Cheol;Jung, Jun Hyung;Kim, Yong Soo;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.537-553
    • /
    • 2016
  • This paper addresses the safety of two-row tank design by performing the extensive sloshing model tests. Owing to the uncertainties entangled with the scale law transforming the measured impact pressure up to the full scale one, so called comparative approach was taken to derive the design sloshing load. The target design vessel was chosen as 230 K LNG-FPSO with tow-row tank arrangement and the reference vessel as 138 K conventional LNG carrier, which has past track record without any significant failure due to sloshing loads. Starting with the site-specific metocean data, ship motion analysis was carried out with 3D diffraction-radiation program, then the obtained ship motion data was used as 6DOF tank excitation for subsequent sloshing model test and analysis. The statistical analysis was carried out with obtained peak data and the long-term sloshing load was determined out of it. It was concluded that the normalized sloshing impact pressure on 230 K LNG-FPSO with two-row tank arrangement is higher than that of convectional LNG carrier, hence requires the use of reinforced cargo containment system for the sake of failure-free operation without filling limitation.