• Title/Summary/Keyword: LNGC containment

Search Result 6, Processing Time 0.033 seconds

Study on Hydroelastic Analysis of LNGC Cargo by Global-Local Analysis Technique (전역-국부 해석기법에 의한 LNG 운반선 화물창의 유탄성 해석에 관한 연구)

  • Park, Seong-Woo;Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.83-92
    • /
    • 2007
  • There are many numerical methods to solve large-scale fluid-structure interaction(FSI) problems. However, these methods require very fine mesh to achieve the reasonable numerical accuracy and stability due to the concentrated and volatile hydrodynamic pressure caused by the liquid sloshing. Consequently, the numerical analysis targeting for the long-period time response with the desired numerical accuracy Is very highly time-consuming. The aim of this paper is to suggest a new method to analyze the hydroelastic behavior of the LNGC containment by using the global-local numerical approach. The reliability of the presented method is firstly examined, and then its efficiency is demonstrated by presenting that the long-period local responses of the LNGC containment are obtained with relatively short CPU time.

Local Zooming Analysis of LNGC CCS under Sloshing Impact Loading (LNG선 단열시스템의 슬로싱 충격하중에서의 국부확대해석)

  • Lee, Sang-Gab;Hong, Anh;Cho, Heon-Il;Kim, Jin-Kyung;Ahn, Ji-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.544-551
    • /
    • 2011
  • As the cargo tank size and configuration of Liquefied Natural Gas carriers(LNGC) grows in response to the global increase in demands for LNG and the necessities of its economical transportation, impact loading from sloshing may become one of the most important factors in the structural safety of LNG Cargo Containment Systems(CCS). The objective of this study is to demonstrate the procedure of the structural safety assessment of MARK III membrane type CCS under sloshing impact loading using local zooming analysis technique of LS-DYNA code.

  • PDF

Comparative Experimental Study on Sloshing Impact Loads of LNG Cargoes in Membrane Containment System of 160K LNGC (160K LNGC 멤브레인 화물창에 작용하는 슬로싱 충격 하중에 대한 비교 실험 연구)

  • Kwon, Chang Seop;Lee, Young Jin;Kim, Hyun Joe;Lee, Dong Yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • A new state-of-the-art sloshing research equipment has developed to perform the model test of LNG tanks for the safer design of LNG cargo containment system in violent sloshing phenomena. This sloshing test system has developed by the Samsung Ship Model Basin (SSMB) and thoroughly verified. The accuracy of the motion of hexapods equipment for the excitation of a model tank has been verified. The maximum displacement in six degrees of freedom, harmonic motions of various frequencies, and irregular motions in wave conditions are measured and compared with input signals. In order to confirm the reliability of the post-processing program for measured impact pressure, the post-processed results were compared with those of the reference institute. A benchmarking sloshing test using 1/50 scale model of 160K LNGC tank was conducted for the verification of the whole testing system. The partial filing levels were considered. As a result of the experiment, it is confirmed that the results are in good agreement with those of the reference institute.

A Study on Application of Corrugated Invar Strake Edge in the Membrane Cargo Containment of LNG Carriers (LNG선 화물격납용기 Invar strake edge 이음부 형상 개선에 관한 연구)

  • Han, Jong-Man
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.74-80
    • /
    • 2009
  • The membrane of the LNG carriers consists of thin strips of INVAR(Fe-36%Ni) steel plates, and the junction between INVAR strips is fabricated by welding. Thousands of the raised edge joints, regularly spaced, are located around all the side of the tank corner near the transverse bulkhead, and TIG welding is manually made on the top of the raised edges. Since the thickness of all the laminated edge plies is extremely thin and the weld position is under a bad accessibility, highly skilled workers are required to perform welding relatively for a long welding time. An alternative scheme for the corner membrane fabrication is proposed in the study to improve the installation workability and thus productivity. The scheme replaces the welded edges with the preformed corrugation ones. A panel strip with regularly-spaced corrugations is installed at the corner instead of the individual flat strip of which edge is vertically raised to be welded with the adjacent strip. In the study, a series of the evaluation on the corrugated edge members was performed to assess the applicability to the real LNG carrier fabrication. Opening displacement at the raised edge was experimentally examined. Elastic stiffness regressed from the displacement was nearly same in both edge types. Edge displacement and local stresses were calculated under hydrostatic pressure and temperature change due to liquefied cargo. Fatigue test was performed on both corrugated and welded edge specimens consisting of two or five plies of invar strips. Fatigue strength of the corrugated specimens was not less than that of the welded specimens.

Heading Control of a Turret Moored Offshore Structure Using Resolved Motion and Acceleration Control

  • Kim, Young-Shik;Sung, Hong-Gun;Kim, Jin-Ha
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.16-24
    • /
    • 2018
  • This paper addresses the heading control of an offshore floating storage and regasification unit (FSRU) using a resolved motion and acceleration control (RMAC) algorithm. A turret moored vessel tends to have the slewing motion. This slewing motion may cause a considerable decrease in working time in loading and unloading operation because the sloshing in the LNG containment tank might happen and/or the collision between FSRU and LNGC may take place. In order to deal with the downtime problem due to this slewing motion, a heading control system for the turret moored FSRU is developed, and a series of model tests with azimuth thrusters on the FSRU is conducted. A Kalman filter is applied to estimate the low-frequency motion of the vessel. The RMAC algorithm is employed as a primary heading control method and modified I-controller is introduced to reduce the steady-state errors of the heading of the FSRU.

Experimental Assessment of Dynamic Strength of Membrane Type LNG Carrier Insulation System (멤브레인 LNG선 방열시스템 동적강도 실험적 특성평가)

  • Lee, Jun-Hwan;Choi, Woo-Chul;Kim, Myung-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Choe, Ick-Hung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.296-304
    • /
    • 2007
  • The objective of this paper is to investigate the dynamic strength characteristics of LNG carriers cargo containment system under impact loads experimentally. The material properties were experimentally obtained for individual components of MARK III insulation system. A series of impact tests was performed using a custom-built drop experiment facility as varying heights and weights of the drop object. Crack initiation and propagation were measured during the cyclic dry drop experiment. The quantitative relationship between impact load and crack initiation as well as the cycle number and crack propagation were reported.