• Title/Summary/Keyword: LPV Model

Search Result 14, Processing Time 0.027 seconds

Nonlinear Controller Design of Active Magnetic Bearing Systems Based on Polytopic Quasi-LPV Models (Polytopic Quasi-LPV 모델 기반 능동자기베어링의 비선형제어기 설계)

  • Lee, Dong-Hwan;Park, Jin-Bae;Jeong, Hyun-Suk;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.797-802
    • /
    • 2010
  • In this paper, a systematic procedure to design a nonlinear controller for nonlinear active magnetic bearing (AMB) systems is presented. To do this, we effectively convert the AMB system into a polytopic quasi-linear parameter varying (LPV) system, which is a representation of nonlinear state-space models and is described by the convex combination of a set of precisely known vertices. Unlike the existing quasi-LPV systems, the nonlinear weighting functions, which construct the polytopic quasi-LPV model of the AMB system by connecting the vertices, include not only state variables but also the input ones. This allows us to treat the input nonlinearity effectively. By means of the derived polytopic quasi-LPV model and linear matrix inequality (LMI) conditions, nonlinear controller that stabilizes the AMB system is obtained. The effectiveness of the proposed controller design methodology is finally demonstrated through numerical simulations.

Event-Triggered H2 Attitude Controller Design for 3 DOF Hover Systems (3 자유도 비행체 시스템의 이벤트 트리거 기반의 H2 자세 제어기 설계)

  • Jung, Hyein;Han, Seungyong;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.139-148
    • /
    • 2020
  • This paper is concerned with the H2 attitude controller design for 3 degree of freedom (DOF) Hover systems with an event-triggered mechanism. The 3 DOF Hover system is an embedded platform for unmanned aerial vehicle (UAV) provided by Quanser. The mathematical model of this system is obtained by a linearization around operating points and it is represented as a linear parameter-varying (LPV) model. To save communication network resources, the event-triggered mechanism (ETM) is considered and the performance of the system is guaranteed by the H2 controller. The stabilization condition is obtained by using Lyapunov-Krasovskii functionals (LKFs) and some useful lemmas. The effectiveness of the proposed method is shown by simulation and experimental results.

Robust Fault Detection Based on Aero Engine LPV Model

  • Linfeng, Gou;Xin, Wang;Liang, Chen
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.35-38
    • /
    • 2008
  • This paper develops an aero engine LPV mathematical model to exactly describe aero engine dynamic process characteristics, eliminate the effect of modeling error. Design FDF with eigenstructure assignment. The simulation results of turbofan engine control system sensor fault show that this method has good performance in focusing discrimination in fault signal with modeling eror, enhancing the robustness to unknown input, detecting accuracy is high and satisfiying real-time requirement.

  • PDF

State set estimation based MPC for LPV systems with input constraint

  • Jeong, Seung-Cheol;Kim, Sung-Hyun;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.530-535
    • /
    • 2004
  • This paper considers a state set estimation (SSE) based model predictive control (MPC) for linear parameter- varying (LPV) systems with input constraint. We estimate, at each time instant, a feasible set of all states which are consistent with system model, measurements and a priori information, rather than the state itself. By combining a state-feedback MPC and an SSE, we design an SSE-based MPC algorithm that stabilizes the closed-loop system. The proposed algorithm is solved by semi-de�nite program involving linear matrix inequalities. A numerical example is included to illustrate the performance of the proposed algorithm.

  • PDF

Disturbance-Observer-Based Robust H Switching Tracking Control for Near Space Interceptor

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • A novel robust $H_{\infty}$ switching tracking control design method with disturbance observer is proposed for the near space interceptor (NSI) with aerodynamic fins and reaction jets. Initially, the flight envelop of the NSI is divided into small subregions, and a slow-fast loop polytopic linear parameter varying (LPV) model is proposed, to approximate the nonlinear dynamic of the NSI, based on the Jacobian linearization and Tensor-Product (T-P) model transformation approach. A disturbance observer is then constructed, to estimate the modeled disturbance. Subsequently, based on the descriptor system method, a robust switching controller is developed, to ensure that the closed-loop descriptor system is stable with a desired $H_{\infty}$ disturbance attenuation level. Furthermore, the outcome of the proposed switching tracking control problem is formulated as a set of linear matrix inequalities (LMIs). Finally, simulation results demonstrate the effectiveness of the proposed design method.

Stability conditions for Time-delayed LPV systems (시간 지연 선형 파라메타 변형 시스템의 안정화 조건에 관한 연구)

  • Jeong, Chang-Ki;Kang, Byung-Hoon;Ko, Jeong-Wan;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.55-56
    • /
    • 2007
  • In this paper, a delay-dependent stability criterion for time-delayed linear parameter varying (LPV) systems is considered. Stability criterion has been developed on the basis of including x(t-h) and x(t) and introducing free variables to eliminate model dynamics. Since the resultant criterion is formed parameterized linear matrix inequalities (PLMIs), we propose a relaxation technique that allows to find an LMI formulation. Examples demonstrate the efficiency of the criterion over the existing results.

  • PDF

An Improved Hybrid Kalman Filter Design for Aircraft Engine based on a Velocity-Based LPV Framework

  • Liu, Xiaofeng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.535-544
    • /
    • 2017
  • In-flight aircraft engine performance estimation is one of the key techniques for advanced intelligent engine control and in-flight fault detection, isolation and accommodation. This paper detailed the current performance degradation estimation methods, and an improved hybrid Kalman filter via velocity-based LPV (VLPV) framework for these needs is proposed in this paper. Composed of a nonlinear on-board model (NOBM) and VLPV, the filter shows a hybrid architecture. The outputs of NOBM are used for the baseline of the VLPV Kalman filter, while the system performance degradation factors on-line estimated by the measured real system output deviations are fed back to the NOBM for its updating. In addition, the setting of the process and measurement noise covariance matrices' values are also discussed. By applying it to a commercial turbofan engine, simulation results show the efficiency.

Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control (모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어)

  • Hyunsoo, Cha;Jayu, Kim;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

Sampled-Data MPC for Leader-Following of Multi-Mobile Robot System (다중모바일로봇의 리더추종을 위한 샘플데이타 모델예측제어)

  • Han, Seungyong;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.308-313
    • /
    • 2018
  • In this paper, we propose a sampled-data model predictive tracking control deign for leader-following control of multi-mobile robot system. The error dynamics of leader-following robots is modeled as a Linear Parameter Varying (LPV) model. Also, the Lyapunov function is presented to guarantee stability of the networked control system. Based on the stabilization condition using a quadratic Lyapunov function approach, model predictive sampled-data controller is designed. Finally, the leader-following control of multi mobile robots is simulated to show effectiveness of the proposed method.

Depth and Speed Control of Large Diameter Unmanned Underwater Vehicles (대형급 무인잠수정의 심도 및 속도 제어)

  • Kim, Do Wan;Kim, Moon Hwan;Park, Ho-Gyu;Kim, Tae-Yeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.563-567
    • /
    • 2017
  • This paper deals with the depth and speed controls of a class of nonlinear large diameter unmanned underwater vehicles (LDUUVs), while maintaining its attitude. The concerned control problem can be viewed as an asymptotic stabilization of the error model in terms of its desired depth, surge speed and attitude. To tackle its nonlinearities, the linear parameter varying (LPV) model is employed. Sufficient linear matrix inequality (LMI) conditions are provided for its asymptotic stabilization. A numerical simulation is provided to demonstrate the effectiveness of the proposed design methodology.