• Title/Summary/Keyword: LVDS

Search Result 53, Processing Time 0.034 seconds

The Design of CMOS-based High Speed-Low Power BiCMOS LVDS Transmitter (CMOS공정 기반의 고속-저 전압 BiCMOS LVDS 구동기 설계)

  • Koo, Yong-Seo;Lee, Jae-Hyun
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.69-76
    • /
    • 2007
  • This paper presents the design of LVDS (Low-Voltage-Differential-Signaling) transmitter for Gb/s-per-pin operation. The proposed LVDS transmitter is designed using BiCMOS technology, which can be compatible with CMOS technology. To reduce chip area and enhance the robustness of LVDS transmitter, the MOS switches of transmitter are replaced with lateral bipolar transistor. The common emitter current gain($\beta$) of designed bipolar transistor is 20 and the cell size of LVDS transmitter is $0.01mm^2$. Also the proposed LVDS driver is operated at 1.8V and the maximum data rate is 2.8Gb/s approximately In addition, a novel ESD protection circuit is designed to protect the ESD phenomenon. This structure has low latch-up phenomenon by using turn on/off character of P-channel MOSFET and low triggering voltage by N-channel MOSFET in the SCR structure. The triggering voltage and holding voltage are simulated to 2.2V, 1.1V respectively.

  • PDF

An Offset-Compensated LVDS Receiver with Low-Temperature Poly-Si Thin Film Transistor

  • Min, Kyung-Youl;Yoo, Chang-Sik
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • The poly-Si thin film transistor (TFT) shows large variations in its characteristics due to the grain boundary of poly-crystalline silicon. This results in unacceptably large input offset of low-voltage differential signaling (LVDS) receivers. To cancel the large input offset of poly-Si TFT LVDS receivers, a full-digital offset compensation scheme has been developed and verified to be able to keep the input offset under 15 mV which is sufficiently small for LVDS signal receiving.

  • PDF

Comparative Analysis and Performance Evaluation of New Low-Power, Low-Noise, High-Speed CMOS LVDS I/O Circuits (저 전력, 저 잡음, 고속 CMOS LVDS I/O 회로에 대한 비교 분석 및 성능 평가)

  • Byun, Young-Yong;Kim, Tae-Woong;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.26-36
    • /
    • 2008
  • Due to the differential and low voltage swing, Low Voltage Differential Signaling(LVDS) has been widely used for high speed data transmission with low power consumption. This paper proposes new LVDS I/O interface circuits for more than 1.3 Gb/s operation. The LVDS receiver proposed in this paper utilizes a sense amp for the pre-amp instead of a conventional differential pre-amp. The proposed LVDS allows more than 1.3 Gb/s transmission speed with significantly reduced driver output voltage. Also, in order to further improve the power consumption and noise performance, this paper introduces an inductance impedance matching technique which can eliminate the termination resistor. A new form of unfolded impedance matching method has been developed to accomplish the impedance matching for LVDS receivers with a sense amplifier as well as with a differential amplifier. The proposed LVDS I/O circuits have been extensively simulated using HSPICE based on 0.35um TSMC CMOS technology. The simulation results show improved power gain and transmission rate by ${\sim}12%$ and ${\sim}18%$, respectively.

Design of a High-Speed LVDS I/O Interface Using Telescopic Amplifier (Telescopic 증폭기를 이용한 고속 LVDS I/O 인터페이스 설계)

  • Yoo, Kwan-Woo;Kim, Jeong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.89-93
    • /
    • 2007
  • This paper presents the design and the implementation of input/output (I/O) interface circuits for 2.5 Gbps operation in a 3.3V 0.35um CMOS technology. Due to the differential transmission technique and low voltage swing, LVDS(low-voltage differential signaling) has been widely used for high speed transmission with low power consumption. This interface circuit is fully compatible with the LVDS standard. The LVDS proposed in this paper utilizes a telescopic amplifier. This circuit is operated up to 2.3 Gbps. The circuit has a power consumption of 25. 5mW. This circuit is designed with Samsung $0.35{\mu}m$ CMOS process. The validity and effectiveness are verified through the HSPICE simulation.

Design of Mini-LVDS Output Buffer using Low-Temperature Poly-Silicon (LTPS) thin-film transistor (TFT)

  • Nam, Young-Jin;Min, Kyung-Youl;Yoo, Chang-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.685-688
    • /
    • 2008
  • Mini-LVDS has been widely used for high speed data transmission because it provides low EMI and high bandwidth for display driver. In this paper, a Mini-LVDS output buffer with LTPS TFT process is presented which provides sufficient performance in the presence of large variation in the threshold voltage and mobility and kink effect.

  • PDF

1.5Gb/s Low Power LVDS I/O with Sense Amplifier (Sense amplifier를 이용한 1.5Gb/s 저전력 LVDS I/O 설계)

  • 변영용;이승학;김성하;김동규;김삼동;황인석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.979-982
    • /
    • 2003
  • Due to the differential transmission technique and low voltage swing, LVDS has been widely used for high speed transmission with low power consumption. This paper presents the design and implementation of interface circuits for 1.5Gb/s operation in 0.35um CMOS technology. The interface circuit ate fully compatible with the low-voltage differential signaling(LVDS) standard. The LVDS proposed in this paper utilizes a sense amplifiers instead of the conventional differential pre-amplifier, which provides a 1.5Gb/s transmission speed with further reduced driver output voltage. Furthermore, the reduced driver output voltage results in reducing the power consumption.

  • PDF

A Study on The Design of High Speed-Low Voltage LVDS Driver Circuit with Novel ESD Protection Device (새로운 구조의 ESD 보호소자를 내장한 고속-저 전압 LVDS 드라이버 설계에 관한 연구)

  • Kim, Kui-Dong;Kwon, Jong-Ki;Lee, KJae-Hyun;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.141-148
    • /
    • 2006
  • In this study, the design of advanced LVDS(Low Voltage Differential Signaling) I/O interface circuit with new structural low triggering ESD (Electro-Static Discharge) protection circuit was investigated. Due to the differential transmission technique and low signal swing range, maximum transmission data ratio of designed LVDS transmitter was simulated to 5Gbps. And Zener Triggered SCR devices to protect the ESD Phenomenon were designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 5.8V. Finally, The high speed I/O interface circuit with the low triggered ESD protection device in one-chip was designed.

  • PDF

A Study on Design of High Speed-Low Voltage LVDS Driver Circuit Using BiCMOS Technology (고속 저 전압 BiCMOS LVDS 회로 설계에 관한 연구)

  • Lee, Jae-Hyun;Yuk, Seung-Bum;Koo, Yong-Seo;Kim, Kui-Dong;Kwon, Jong-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.621-622
    • /
    • 2006
  • This paper presents the design of LVDS(Low-Voltage-Differential-Signaling) driver circuit for Gb/s-per-pin operation using BiCMOS process technology. To reduce chip area, LVDS driver's switching devices were replaced with lateral bipolar devices. The designed lateral bipolar transister's common emitter current gain($\beta$) is 20 and device's emitter size is 2*10um. Also the proposed LVDS driver is operated at 2.5V and the maximum data rate is 2.8Gb/s approximately.

  • PDF

High Noise Margin LVDS I/O Circuits for Highly Parallel I/O Environments (다수의 병렬 입.출력 환경을 위한 높은 노이즈 마진을 갖는 LVDS I/O 회로)

  • Kim, Dong-Gu;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.85-93
    • /
    • 2007
  • This paper presents new LVDS I/O circuits with a high noise margin for use in highly parallel I/O environments. The proposed LVDS I/O includes transmitter and receiver parts. The transmitter circuits consist of a differential phase splitter and a output stage with common mode feedback(CMFB). The differential phase splitter generates a pair of differential signals which have a balanced duty cycle and $180^{\circ}$ phase difference over a wide supply voltage variation due to SSO(simultaneous switching output) noises. The CMFB output stage produces the required constant output current and maintains the required VCM(common mode voltage) within ${\pm}$0.1V tolerance without external circuits in a SSO environment. The proposed receiver circuits in this paper utilizes a three-stage structure(single-ended differential amp., common source amp., output stage) to accurately receive high-speed signals. The receiver part employs a very wide common mode input range differential amplifier(VCDA). As a result, the receiver improves the immunities for the common mode noise and for the supply voltage difference, represented by Vgdp, between the transmitter and receiver sides. Also, the receiver produces a rail-to-rail, full swing output voltage with a balanced duty cycle(50% ${\pm}$ 3%) without external circuits in a SSO environment, which enables correct data recovery. The proposed LVDS I/O circuits have been designed and simulated with 0.18um TSMC library using H-SPICE.

Analysis and Design Optimization of Interconnects for High-Speed LVDS Applications (고속 LVDS 응용을 위한 전송선 분석 및 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.70-78
    • /
    • 2009
  • This paper addresses the analysis and the design optimization of differential interconnects for high-speed Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and trace space in differential printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, and time-domain transient simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects. We believe that the proposed approach is very helpful to optimize high-speed differential FPCB interconnects for LVDS applications.