• Title/Summary/Keyword: Lactobacillus brevis

Search Result 253, Processing Time 0.027 seconds

Isolation and Identification of Lactobacillus sp. Produced r-Aminobutyric Acid(GABA) from Traditional Salt Fermented Anchovy (멸치 젓갈로부터 r-Aminobutyric Acid(GABA)를 생성하는 Lactobacillus 속의 분리.동정)

  • 전재호;김현대;이홍수;류병호
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2004
  • This study was conducted to investigate the identification of lactic acid bacteria produced ν-aminobutyric acid(GABA) from traditional salt fermented anchovy. There was no appreciable difference in the number of lactic acid bacteria from fermented anchovy. Among the types of lactic acid bacteria, three strains of lactic acid bacteria produced ν-aminobutyric acid from those sample were identified temporary as name of Lactobacillus brevis BH-21, Lactobacillus rhamnosus BH-32 and Lactobacillus plantarum BH-38 by using gram positive identification(GPI) card and API 50 kit, respectively. 3 strains of Lactobacillus sp. were found to produce GAB A in the culture of filtrate. Lactobacillus brevis BH-21 produced GABA, some of which yielded 43.2 mg/mL GABA in the medium of 0.1% glucose, 0.1% yeast extract, 0.05% polypeptone, 0.002% MgSO$_4$$.$4H$_2$O, 0.001% FeSO$_4$$.$7H$_2$O, 0.01% NaCl, 0.1% monosodium glutamate, pH 6.0. This result suggests that Lactobacillus brevis BH-21 has the potential to be developed as a strain of GABA production.

Continuous Production of γ-aminobutyric Acid by Immobilization of Lactobacillus brevis (Lactobacillus brevis의 고정화 균체에 의한 γ-aminobutyric acid의 연속 생산)

  • 류병호;전재호
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.167-173
    • /
    • 2004
  • The optimal conditions for the continuous production of $\gamma$-aminobutyric acid by immobilization of Lactobacillus brevis BH-21 using column type reactor were investigated. The optimal conditions of operation were 2.2 mm diameter bead of 3.0% sodium alginate at 10 mL/h of substrate feeding rate. Continuous production by immobililzed cells showed the highest productivity with replacement of fresh medium in every 48h for fourth fermentatoin cycle following the rendition of $\gamma$-aminobutyric acid productivity. A productivity of $\gamma$-aminobutyric acid could be obtained for 25 days by continuous column type reactor under optimal conditions.

Studies on Growth Characteristics of lactobacillus brevis Isolated from Kimchi - Optimization of Nutrient Composition in Sourdough Media - (김치에서 분리한 Lactobacillus brevis의 생장 특성에 관한 연구( I ) - Sourdough 배지의 영양 조성 최적화 -)

  • 신언환
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.3
    • /
    • pp.215-219
    • /
    • 2002
  • Growth characteristics of sourdough lactic acid bacteria was investigated to obtain basic informations for sourdough starter. The optimum temperature and pH on bacterial growth and lactic acid production of Lactobacillus brevis UC-22 in sourdough broth were 35'E and around pH 5.5, respectively. And the optimum concentrations of the carbohydrate sources added to the broths was 2% maltose. The acidity significantly increased during growth by Lactobacillus brevis UC-22 fur 18 hours while pH significantly decreased during growth.

Effect of Lactobacillus brevis HY7401 Intake on the Serum Ethanol Concentration in Rats (Lactobacillus brevis HY7401 섭취가 쥐의 혈중 알코올 수준에 미치는 영향)

  • Ahn, Young-Tae;Kim, Yong-Hee;Bae, Jin-Seong;Lim, Kwang-Sei;Huh, Chul-Sung;Yang, Woo-Young;Kim, Hyung-Su;Baek, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.604-608
    • /
    • 2004
  • Possibility of Lactobacillus strains able to metabolize ethanol and acetaldehyde in vitro and in vitro was studied. Lactobacillus brevis strains showed higher alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities than those of other lactic acid bacteria strains. L. brevis HY7401 exhibited the highest ADH and ALDH activities and decreased considerable amounts of ethanol and acetaldehyde in vitro. L. brevis HY7401 cell intake significantly decreased serum ethanol levels in rats fed ethanol (4g/kg BW) compared to control groups. Ethanol level in small intestines of rats fed L. brevis HY7401 was about 50%, and their acetic acid concentration was twofold higher than control. Results reveal L. brevis HY7401, isolated from human, metabolizes ethanol and acetaldehyde in vitro and in vivo.

Acid Tolerance of Lactobacillus brevis Isolated from Kimchi (김치에서 분리한 Lactobacillus brevis의 내산성)

  • Lee, Kap-Sang;Shin, Yong-Seo;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1399-1403
    • /
    • 1998
  • We isolated wild lactic acid bacteria from kimchi and identified as Lactobacillus brevis by using API 50 CHL Kit, some morphological and physiological tests. In order to evaluate the acid tolerance of Lactobacillus brevis, its survivals rate, glycolysis assay, membrane permeability, and pH profiles of $H^+-ATPase$ were also determined. When Lactobacillus brevis were incubated in Lactobacilli MRS broth adjusted to various levels of pH for 2 hours, the decreases in its population at pH 4.0 and 3.0 were about 2.61 log cycles/mL and 5.89 log cycles/mL, respectively, but there was no decrease at pH 6.0 and 5.0. Glycolysis by Lactobacillus brevis had optimal pH about 6.5 and glucose degradation was reduced by 50% at a pH of 5.2. $Mg^{++}$ release from Lactobacillus brevis cells in medium with pHs of 4.0 and 3.0 was 24.3 and 71.2% of totals, respectively. The $H^+-ATPase$ of Lactobacillus brevis showed a maximal activity between pH values of approximately 6.5 to 7.0.

  • PDF

Antimicrobial Effect of Water Extract of Green Tea against Pediococcus pentosaceus and Lactobacillus brevis Isolated from Kimchi (김치에서 분리한 Pediococcus pentosaceus와 Lactobacillus brevis 에 대한 녹차 물추 출물의 항균 효과)

  • 신미경;신용서
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.5 no.3
    • /
    • pp.309-315
    • /
    • 1995
  • In this study we isolate lactic acid bacteria from kimchi, which were identified as pediococcus pentosaceus and Lactobacillus bevis by using API 50 CHL Kit, some morphological and physiological tests, The water extract of green tea(50, 100, 500, 1000ppm) inhibieted the growth of pediococcus pentosaceus and Lactobacillus brevis in broth system. Furthermore, their time were prolonged to about 4hours at 500 to 1000ppm. The leakage amount of intracellular materials and Mg++ in tested bacteria cells increased with increasing concentration of green tea water extract.

  • PDF

Expression of ${\alpha}$-Galactosidase Gene from Leuconostoc mesenteroides SY1 in Lactobacillus brevis 2.14

  • Lee, Kang-Wook;Park, Ji-Yeong;Park, Jae-Yong;Chun, Ji-Yeon;Kim, Jeong-Hwan
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1115-1118
    • /
    • 2008
  • ${\alpha}$-Galactosidase gene (aga) from Leuconostoc mesenteroides SY1 was expressed in a heterologous host, Lactobacillus brevis 2.14 using an Escherichia coli-Leuconostoc shuttle vector, pSJE. pSJEaga (pSJE carrying aga) was introduced into Lactobacillus brevis 2.14 by electroporation and transformation efficiency was $1.1{\times}10^3$ per ${\mu}g$ DNA. L. brevis transformants (TFs) showed higher ${\alpha}$-galactosidase (${\alpha}$-Gal) activities than cells containing pSJE. Transcription levels of aga in L. brevis 2.14 grown on different carbon sources (1%, w/v) were examined by slot blot analysis. Aga transcript levels and ${\alpha}$-Gal activities were higher in cells grown on melibiose, raffinose, and galactose than cells on glucose, sucrose, and fructose. Western blot result showed that L. brevis 2.14 harboring pSJEaga produced much more ${\alpha}$-Gal when grown on melibiose than on glucose.

Adhesive Properties of Lactobacillus brevis FSB-1 In Vivo

  • Kim, Seong-Yeong;Shin, Kwang-Soon;Lee, Ho
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.560-567
    • /
    • 2010
  • This study was conducted to evaluate the in vivo gastrointestinal survival and adhesive properties of orally administered Lactobacillus brevis FSB-1. ELISA conducted using polyclonal antibodies specific for L. brevis FSB-1 was able to detect the organism in feces; therefore, we used ELISA to determine the concentration of lactic acid bacteria in feces collected from Wister rats that had been administered $10^{10}$ cells/rat/d orally for 20 d. The mean recovery of L. brevis FSB-1 was approximately $10^{7.22}$ cells/g of wet feces during the oral administration period, and $10^{7.50}$ and $10^{7.46}$ at 8 and 10 d after the end of oral administration, respectively. These results indicate that L. brevis FSB-1 was able to survive in the gastrointestinal tract of rats, and that it had a high adhesive property in rat colons.

Identification of Bacteriocin-producing Lactic Acid Bacteria from Kimchi and Partial Characterization of their Bacteriocin

  • Ha, Duk-Mo;Cha, Dong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.305-315
    • /
    • 1994
  • Nineteen strains of bacteriocin-producing lactic acid bacteria were isolated from 432 Kimchi samples, and identified by the comprehensive biochemical and morphological tests verifying their cellular fatty acid composition. Using partially purified bacteriocins from these isolates, their inhibitory activities against other lactic acid bacteria and some pathogens, and sensitivity to enzyme and heat treatments were tested. The isolates were identified as Lactobacillus plantarum (2 strains), L curvatus (2 starins), L brevis (2 strains), Enterococcus faecium (6 strains), Leuconostoc mesenteroides subsp. mesenteroides (1 strain) and Lactobacillus sp. (6 strains). The bacteriocins produced by E. faecium strains provided the broadest spectrum of inhibition, affecting against other Gram-positive bacteria including lactic acid bacteria and health-threatening bacteria such as Clostridium perfringens and Listeria monocytogenes. The bacteriocins of Lactobacillus sp., L plantarum and L brevis strains were capable of inhibiting many strains of the lactic acid bacteria, whereas those of L curvatus and L mesenteroides subsp. mesenteroides strains were only inhibitory to a few strains. Generally, the inhibitory activities of both E. faecium and Lactobacillus sp. strains were greater than those of other producer strains. The bacteriocins from the isolates were sensitive to several proteolytic enzymes, and those of L curvatus and L mesenteroides subsp. mesenteroides were also sensitive to lipase and $\alpha$-amylase as well as to proteolytic enzymes. The bacteriocins from the strains of Lactobacillus sp. and a strain of L. brevis were resistant to autoclaving.

  • PDF

Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration

  • Li, Y.;Wang, F.;Nishino, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.516-522
    • /
    • 2016
  • We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56- day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents.