• Title/Summary/Keyword: Ladle Slag

Search Result 34, Processing Time 0.026 seconds

Desulfurization Reaction according to Ladle Slag Recycling Method in Shaft-Type EAF Operation (Shaft형 전기로 공정에서 ladle 슬래그 재활용 방법에 따른 탈황반응)

  • Jung-Min Yoo
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.46-53
    • /
    • 2024
  • The residual heat and high CaO content present in the slag remaining in the ladle after the completion of continuous casting in the electric arc furnace (EAF) steelmaking process have been utilized to reduce power consumption and lime usage in the ladle furnace (LF) process. However, if the timing of such processes does not align with the LF and continuous casting operations, the recycling rate will decrease. To increase the slag recycling rate, the effect of ladle slag recycling methods, specifically pouring ladle slag into the slag pot in advance for subsequent recycling, on LF operations was analyzed. The slag liquefaction rate was calculated using the thermodynamic program Factsage 8.3 for ladle molten slag recycling methods. By applying each of the 10 heats operations for the ladle slag recycling methods, the desulfurization ability and LF operation performance were compared. It was found that when slag was immediately recycled into the ladle after continuous casting was completed, power consumption decreased by 0.3 MWh, LF operation time was shortened by 1.2 minutes, and the desulfurization rate increased by 5.8%.

A Study on the Recycling of Molten Ladle Slag Residue into LF Process (Ladle내 잔류(殘留) 용융(熔融)슬래그의 LF 공정(工程)으로 재활용(再活用)에 관한 연구(硏究))

  • Kim, Young-Hwan;Yoo, Jung-Min;Kim, Dong-Sik;Lim, Jong-Hoon;Yang, Sung-Ho
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • LF slag is formed by EAF carryover slag and slag former(such as lime, dolomite) put into the ladle during the tapping molten metal. After LF process, continuous casting is started when molten steel is sent from ladle to tundish through bottom nozzle of ladle. Conventionally, remained molten slag and steel in ladle are poured into a slag port and they are transferred to a slag yard and then recycled. In this study, we investigated about recycling of molten LF slag residue(including Fe residue to reuse) which is made in steelmaking process. As a result, lime usage was decreased about 2.2~3.2 kg/steel-ton and also molten steel yield rate was increased about 0.3 ~ 0.5 percent point.

Evaluation of the Performance of Multi-binders (lime, DAP and ladle slag) in Treating Metal(loid)s-contaminated Soils (중금속류 오염 토양 처리를 위한 복합 고화제(lime, DAP, 래들 슬래그) 성능 평가)

  • Choi, Jiyeon;Shin, Won Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.955-966
    • /
    • 2017
  • Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.

Strength Properties of Calcium-aluminate based Foamed Concrete according to Replacement Ratio of GGBFs (고로슬래그 혼입율에 따른 CA계 기포콘크리트의 강도특성)

  • Yu, Jae-Seong;Choi, Sun-Mi;Choi, Hong-Bum;Li, Mao;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.39-40
    • /
    • 2016
  • The aim of this research was evaluating strength characteristics of foamed concrete using Ladle Furnace slag with GGBFs. For all mixtures, because of the early setting and strength development, it was possible to deform the formwork and measure the compressive strength within 3 hours.

  • PDF

Reaction Characteristics of the CAC with Various Gypsum Type and Mixing Ratio (석고 종류 및 혼입률에 따른 CAC 반응 특성)

  • Choi, Sun-Mi;Kim, Jin-Man;Koo, Ja-Sul
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • Ladle furnace slag is a byproduct of the steel-making process, and it contains the mineral β-C2Sandtherapid-settingmineral (dependingonwhichreducingagenthasbeenused). Ladle furnace slag is often treated through slow cooling, which causes the slag to lose its reactivity. In this study, the properties of air-quenched CAC and pulverized ladle furnace slag containing gypsum were evaluated, and the optimal mixing ratio was determined for broadening their usage. Consequently, the properties of CAC aredemonstrated by the dissolution of gypsum after a period of three hours and the content of gypsum after a period of one day. The optimal mixing ratio of anhydrate and hemihydrate gypsum is found to be within 30% and that of dihydrate gypsum is found to be higher than 35%. Furthermore, based on the results of CAC with dihydrate gypsum, the applicability of the by-product dihydrate gypsum has been verified.

The Mixing Characteristics of Melt during the Injection of Gas into a Ladle through an Immersed Lance (침적 Lance를 이용한 가스 injection시 ladle내 액체의 교반특성 연구)

  • 박현서
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • There has been an increasing demand over the years for steels with lower[s] content. For the purpose of improving the efficiency of desulphrization in the powder injection process of ladle, experimental studies were carried out by using cold model to optimize the lance configuration, gas flow rate, immersion depth of lance nozzle, position of lance nozzle relative to the ladle and the effect with slag, etc. As the results of this study, it was made clear that 2-hole nozzle lance (C, E type) placed in an asymmetric position gives the shortest mixing times.

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

Solidification and Stabilization of Metal(loid)s-contaminated Soils using Single Binders (단일 고형화제를 이용한 중금속류 오염 토양의 고형화/안정화)

  • Park, Hye Ok;Choi, Jiyeon;Oh, Sanghwa;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.135-147
    • /
    • 2015
  • Remediation of metal(loid)s-contaminated sites is crucial to protect human and ecosystem. Solidification and stabilization of metal(loid)s by the binder amendment is one of the cost-effective technologies. In this study, metal (loid)s in various field-contaminated soils obtained from steel-making, metal refinery and mining tillage were immobilized by the application of single binders such as diammonium phosphate (DAP), lime, and ladle slag. The efficiency of solidification and stabilization was evaluated by Toxicity Characteristic Leaching Procedure (TCLP) and the Standard, Measurements and Testing programme of European Union (SM&T) extraction processes. In terms of TCLP extraction, the binder was effective in order of lime > DAP > ladle slag. All binders were highly effective in the immobilization of Pb, Zn, Cu, Ni, and Cd. The increased immobilization efficiency is attributed to the increase in the Step III and IV fractions of the SM&T extraction. Lime and ladle slag were highly effective in the immobilization of the metal(loid)s, however, As release increased with DAP due to competition between the phosphate originated from DAP and arsenate. A further study is needed for the better immobilization of multi metal(loid)s using binary binders.

Hydrogen Behavior in the Steelmaking Process (제강공정에서 수소의 거동)

  • Shim, Sang-chul;Cho, Jung-wook;Hwang, Sang-taek;Kim, Kwang-chun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.662-671
    • /
    • 2008
  • The behavior of hydrogen in the steel making process was investigated. The relation between the composition of ladle slag and hydrogen concentration in molten steel was considered. The hydrogen distribution ratio between ladle slag and molten steel was increased with increasing basicity of the slag; it was about 20 when the basicity of slag was 15. Hydroxyl capacity measured from the hydrogen distribution ratio between slag and the molten steel was comparatively corresponding to the value of hydroxyl capacity measured by the equilibrium reaction of slag and $H_2O$ gas. However, it is considerably different from the value calculated by regular solution model. The influence of hydrogen on a sticking type breakout is considered. The effect of hydrogen and $H_2O$ gas on the crystallization behavior of mold powder was investigated by DHTT (Dual hot thermocouple technique). As a result, it was proved that mold powder could be crystallized by $H_2O$ gas in the atmosphere. Therefore, it is concluded that $H_2O$ gas in the atmosphere can be a possible cause of the sticking type breakout that occasionally occurs in the continuous casting process.