• 제목/요약/키워드: Lagrange interpolation

검색결과 92건 처리시간 0.024초

Vergence Control of Binocular Stereoscopic Camera Using Disparity Information

  • Kwon, Ki-Chul;Lim, Young-Tae;Kim, Nam;Song, Young-Jun;Choi, Young-Soo
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.379-385
    • /
    • 2009
  • The vergence control of binocular stereoscopic camera is the most essential factor for acquiring high quality stereoscopic images. In this paper, we proposed a binocular stereoscopic camera vergence control method using disparity information by the simple image processing and estimate the quantity of vergence control using the Lagrange interpolation equation. The method of extracting disparity information through image processing is as follows: first the key-object in left & right images was extracted through labeling of the central area of the image, and then a simple method was used for calculating the disparity value of the same key-object in the labeled left and right images. The vergence control method uses disparity information and keeps the convergence distance of left & right cameras and the distance of the key-object the same. According to the proposed method, variance in the distance of the key-object and application of calculated disparity information of obtained left & right images to the quadratic Lagrange interpolation equation could estimate the quantity of vergence control, which confirmed that the method of stereoscopic camera vergence control can be simplified through experiments on various key-objects and other convergence distance.

지능형 액추에이터와 제어면 재분배를 이용한 무인항공기 고장대처 제어시스템 (Fault-Tolerant Control System for Unmanned Aerial Vehicle Using Smart Actuators and Control Allocation)

  • 양인석;김지연;이동익
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.967-982
    • /
    • 2011
  • This paper presents a FTNCS (Fault-Tolerant Networked Control System) that can tolerate control surface failure and packet delay/loss in an UAV (Unmanned Aerial Vehicle). The proposed method utilizes the benefits of self-diagnosis by smart actuators along with the control allocation technique. A smart actuator is an intelligent actuation system combined with microprocessors to perform self-diagnosis and bi-directional communications. In the event of failure, the smart actuator provides the system supervisor with a set of actuator condition data. The system supervisor then compensate for the effect of faulty actuators by re-allocating redundant control surfaces based on the provided actuator condition data. In addition to the compensation of faulty actuators, the proposed FTNCS also includes an efficient algorithm to deal with network induced delay/packet loss. The proposed algorithm is based on a Lagrange polynomial interpolation method without any mathematical model of the system. Computer simulations with an UAV show that the proposed FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults and network induced delays.

다중 컴파트먼트 비밀공유 기법 (A Multi-Compartment Secret Sharing Method)

  • 최철훈;유민수
    • 정보처리학회 논문지
    • /
    • 제13권2호
    • /
    • pp.34-40
    • /
    • 2024
  • 비밀공유 기법은 개인키와 같은 비밀을 복수의 지분으로 분할하여 분산 관리함으로써 비밀의 보안성을 높이는 기술이다. 그동안 다양한 상황에서 비밀공유를 적용하기 위한 많은 연구가 있어 왔으며, Tassa가 제안한 논리곱 기반의 비밀공유 방법은 도함수를 사용하여 계층적 비밀공유를 가능하게 하는 방법이다. 하지만 도함수를 사용하는 계층적 비밀공유는 몇 가지 한계를 가진다. 첫째, 각 레벨의 지분들이 하나의 도함수로부터 생성되기 때문에 하나의 레벨에 하나의 참여자 그룹만을 만들 수 있다. 둘째, 논리곱에 기반한 비밀 복원만 가능하여 임의의 비밀 복원 조건을 규정할 수 없다. 셋째, 도함수를 사용하기 때문에 버크호프 보간법을 필요로 하며, 이는 다항식 기반 비밀공유에 사용되는 라그랑주 보간법에 비해 구현이 복잡하고 어렵다. 본 논문에서는 논리곱 기반 계층적 비밀공유를 일반화시킨 다중 컴파트먼트 비밀공유 기법을 제안한다. 제안하는 기법은 비밀을 복원하는데 필요한 외부지분들을 이용하여 비밀을 암호화하고, 암호화된 비밀 값이 삽입된 다항식을 생성하여 내부지분들을 생성한다. 내부지분들로 다항식을 복원할 수는 있지만, 이 때 얻을 수 있는 값은 암호화된 비밀 값이며 복호화를 위해서는 외부지분들이 필요하다. 이 기법을 적용하면 하나의 계층에 복수의 참여자 그룹을 만들 수 있으며, 논리곱은 물론 임의의 비밀 복원 조건을 구현할 수 있다. 또한 다항식을 사용함에 따라 라그랑주 보간법을 적용하는 것도 가능해진다.

보간법을 이용한 블록펄스 함수에 대한 새로운 적분 연산행렬의 유도 (The New Integral Operational Matrix of Block Pulse Function using Interpolation Method)

  • 조영호;신승권;이한석;안두수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.753-759
    • /
    • 1999
  • BPF(block pulse function) has been used widely in the system analysis and controller design. The integral operational matrix of BPF converts the system represented in the form of the differential equation into the algebraic problem. Therefore, it is important to reduce the error caused by the integral operational matrix. In this paper, a new integral operational matrix is derived from the approximating function using Lagrange's interpolation formula. Comparing the proposed integral operational matrix with another, the result by proposed matrix is closer to the real value than that by the conventional matrix. The usefulness of th proposed method is also verified by numerical examples.

  • PDF

조사구간 윈도우 변형을 이용한 PIV에서 보간법 평가

  • 김병재;성형진
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.25-35
    • /
    • 2006
  • We have evaluated the performances of the following six interpolation schemes used for window deformation in particle image velocimetry (PIV): the linear, quadratic, B-spline, cubic, sinc, Lagrange interpolations. Artificially generated images comprised of particles of diameter in a range $1.1{\leq}d_p\leq10.0$ pixel were investigated. Three particle diameters were selected for detailed evaluation: $d_p$=2.2, 3.3, 4.4 pixel with a constant particle concentration 0.02 $particle/pixel^2$. Two flow patterns were considered: uniform and shear flows. The mean and random errors, and the computation times of the interpolation schemes were determined and compared.

  • PDF

초신속궤도력 기반 GPS 위성 repeat time 산출 및 궤도 예측 (GPS Satellite Repeat Time Determination and Orbit Prediction Based on Ultra-rapid Orbits)

  • 이창문;박관동;김혜인;박재민
    • 한국측량학회지
    • /
    • 제27권4호
    • /
    • pp.411-420
    • /
    • 2009
  • GPS 측량 계획을 수립하기 위해서는 GPS 위성의 예측궤도력을 이용하여 측량자가 원하는 시간과 측점에서 측량이 가능한지 여부를 판단해야 한다. 이 연구에서는 예측궤도력을 생성하기 위한 방법으로 GPS 위성의 repeat time을 이용하였다. Repeat time은 초신속궤도력에 포함된 48시간 GPS 궤도력에서 제공하는 3차원 위성좌표의 상관관계를 분석하여 산출하였다. 그리고 계산된 repeat time을 이용하여 13차 Lagrange 보간 다항식으로 7일간 예측 궤도를 생성하였다. 그 결과, 각 위성의 X, Y, Z 성분별 최대오차의 RMS 평균은 각각 39.8km, 39.7km, 19.6km로 나타났다. 그리고 3차원 오차의 최대값은 119.5km 평균값은 48.9km로 나타났다. 또한 위성의 가시성 분석을 위해 3차원 최대 오차 값인 119.5km를 시야각 오차로 변환한 결과, 방위각과 고도각의 오차는 각각 9.7', 14.9'으로 나타났다.

Dynamic response uncertainty analysis of vehicle-track coupling system with fuzzy variables

  • Ye, Ling;Chen, Hua-Peng;Zhou, Hang;Wang, Sheng-Nan
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.519-527
    • /
    • 2020
  • Dynamic analysis of a vehicle-track coupling system is important to structural design, damage detection and condition assessment of the structural system. Deterministic analysis of the vehicle-track coupling system has been extensively studied in the past, however, the structural parameters of the coupling system have uncertainties in engineering practices. It is essential to treat the parameters of the vehicle-track coupling system with consideration of uncertainties. In this paper, a method for predicting the bounds of the vehicle-track coupling system responses with uncertain parameters is presented. The uncertain system parameters are modeled as fuzzy variables instead of conventional random variables with known probability distributions. Then, the dynamic response functions of the coupling system are transformed into a component function based on the high dimensional representation approximation. The Lagrange interpolation method is used to approximate the component function. Finally, the bounds of the system's dynamic responses can be predicted by using Monte Carlo method for the interpolation polynomials of the Lagrange interpolation function. A numerical example is introduced to illustrate the ability of the proposed method to predict the bounds of the system's dynamic responses, and the results are compared with the direct Monte Carlo method. The results show that the proposed method is effective and efficient to predict the bounds of the system's dynamic responses with fuzzy variables.

Solution of the two-dimensional scalar wave equation by the time-domain boundary element method: Lagrange truncation strategy in time integration

  • Carrer, J.A.M.;Mansur, W.J.
    • Structural Engineering and Mechanics
    • /
    • 제23권3호
    • /
    • pp.263-278
    • /
    • 2006
  • This work presents a time-truncation scheme, based on the Lagrange interpolation polynomial, for the solution of the two-dimensional scalar wave problem by the time-domain boundary element method. The aim is to reduce the number of stored matrices, due to the convolution integral performed from the initial time to the current time, and to keep a compromise between computational economy and efficiency and the numerical accuracy. In order to verify the accuracy of the proposed formulation, three examples are presented and discussed at the end of the article.

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian Method

  • Seo, Il-Won;Kim, Dae-Geun
    • Korean Journal of Hydrosciences
    • /
    • 제6권
    • /
    • pp.51-66
    • /
    • 1995
  • Various Eulerian-Lagerangian numerical models for the one-dimensional longtudinal dispersion equation are studied comparatively. In the models studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing advection and the other dispersion. The advection equation has been solved using the method of characteristics following flud particles along the characteristic line and the result are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpo;ation po;ynomials are superor to Lagrange interpolation polynomials in reducing both dissipation and dispersion errors.

  • PDF

EXPONENTIALLY FITTED INTERPOLATION FORMULAS DEPENDING ON TWO FREQUENCIES

  • KIM, KYUNG JOONG
    • Journal of applied mathematics & informatics
    • /
    • 제34권3_4호
    • /
    • pp.207-220
    • /
    • 2016
  • Our goal is to construct a two-frequency-dependent formula $I_N$ which interpolates a product f of two functions with different frequencies at some N points. In the beginning, it is not clear to us that the formula $I_N$ satisfies $I_N=f$ at the points. However, it is later shown that $I_N$ satisfies the above equation. For this theoretical development, a one-frequency-dependent formula is introduced, and some of its characteristics are explained. Finally, our newly constructed formula $I_N$ is compared to the classical Lagrange interpolating polynomial and the one-frequency-dependent formula in order to show the advantage that is obtained by generating the formula depending on two frequencies.