• Title/Summary/Keyword: Laminaria japonica Aresch

Search Result 5, Processing Time 0.021 seconds

Ultrasonic Extraction of Phenolic Compounds from Laminaria japonica Aresch Using Ionic Liquid as Extraction Solvent

  • Han, Dandan;Zhu, Tao;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2212-2216
    • /
    • 2011
  • An ionic liquid-based ultrasonic-assisted extraction method has been successfully applied to the effective extraction of phenolic compounds from Laminaria japonica Aresch. Three kinds of 1-alkyl-3-methyl-imidazolium with different cations and anions were evaluated for extraction efficiency. The results showed that both the characteristics of anions and cations have remarkable effects on the extraction efficiency. In addition, the ionic liquid-based ultrasonic-assisted extraction procedure was also optimized on some extraction parameters, such as ultrasonic power, extraction time and solid-liquid ratio. Compared with the conventional solvent, the optimum approach gained the highest extraction efficiency within the shortest extraction time. Average recoveries of phenolic compounds were from 75.5% to 88.3% at three concentration levels.

Fermented sea tangle (Laminaria japonica Aresch) Accelerates Osteoblast Differentiation in murine osteoblastic MC3T3-E1 Cells (MC3T3-E1 골아세포에서 발효 다시마 추출물에 의한 조골세포 분화의 촉진)

  • Nara Jeong;Yung Hyun Choi
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • The Laminaria japonica Aresch (Sea tangle) belongs to the brown algae and has a long history as a food material in Asia, including Korea. Recent studies have found that the fermented Sea tangle extract (FST) inhibited the differentiation of osteoclasts and protected osteoblasts from oxidative damage. This study aims to explore the possibility that FST can induce the differentiation of osteoblasts and identify the responsible mechanism. According to our results, FST induced differentiation into osteogenic cells in the presence of osteoblastic MC3T3-E1 cells under non-toxic conditions.. This finding was confirmed by phalloidin staining, increased alkaline phosphatase activity, and calcium deposition. Additionally, it was found that this process was achieved by increasing the expression of key factors involved in osteoblast differentiation, such as runt-related transcription factor-2, osterix, β-catenin, and bone morphogenetic protein-2. Moreover, FST increased autophagy, which may contribute to the maintenance of the bone formation homeostasis, and is associated with the activation of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Although further research about the bioactive substances contained in FST and the tests of their efficacy are required, the results of this study indicate that FST has incredible applicability as a functional material for maintaining the bone homeostasis.

The Herbal Composition GGEx18 from Laminaria japonica, Rheum palmatum, and Ephedra sinica Inhibits High Fat Diet-Induced Obesity by Regulating Appetite Genes

  • Shin, Soon Shik;Yoon, Michung
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.206-212
    • /
    • 2013
  • The herbal composition Gyeongshingangjeehwan 18 (GGEx18), which is composed of three herbs, Laminaria japonica Aresch (Laminariaceae), Rheum palmatum L. (Polygonaceae), and Ephedra sinica Stapf (Ephedraceae), has been used as an anti-obesity drug in Korean local clinics. Thus, we investigated whether GGEx18 regulates obesity by suppressing appetite in high fat diet-induced obese C57BL/6J mice. Administration of GGEx18 to obese mice for 9 weeks significantly decreased body weight gain, epididymal adipose tissue weight, and food efficiency ratio. GGEx18 also caused a significant decrease in the circulating levels of leptin, which were increased by about 450% in obese control mice compared with normal lean mice. Concomitantly, GGEx18 decreased mRNA levels of a potent appetite-stimulating hormone neuropeptide Y, but increased an appetite-suppressing hormone pro-opiomelanocortin mRNA levels. These results suggest that GGEx18 may prevent obesity through regulating appetite in nutritionally obese mice.

Molecular biologic mechanism of obesity by GGEx18 (경신강지환(輕身降脂丸)18의 분자생물학적인 비만조절 기전에 관한 연구)

  • Lee, Hee-Young;Yoon, Ki-Hyeon;Seo, Bu-Il;Park, Gyu-Ryeol;Yoon, Mi-Chung;Shen, Zhi-Bin;Cui, Hong-Hua;Shin, Soon-Shik
    • The Korea Journal of Herbology
    • /
    • v.26 no.1
    • /
    • pp.65-74
    • /
    • 2011
  • Objectives : This study was undertaken to verify the modulation mechanism of Gyeongshingangjeehwan18 (GGEx18) in ob/ob male mice. Methods : Eight-week old mice (wild-type C57BL/6J and ob/ob) were used for all experiments. Wild-type C57BL/6J mice were used as lean control and obese ob/ob mice were randomly divided into 5 groups : obese control, GGEx15 (Ephedra sinica Stapf + Rheum palmatum L.), GGEx16 (Ephedra sinica Stapf + Laminaria japonica Aresch), GGEx17 (Rheum palmatum L. + Laminaria japonica Aresch), and GGEx18 (Ephedra sinica Stapf + Laminaria japonica Aresch + Rheum palmatum L.). After mice were treated with several kinds of GGEx for 11 weeks, the mRNA expression of peroxisome proliferator-activated receptor (PPAR) target genes and uncoupling protein (UCP) were measured. In addition, $PPAR{\alpha}$ and $PPAR{\beta}$ transactivation was examined in NMu2Li hepatocytes, C2C12 myocytes, and 3T3-L1 preadipocytes using transient transfection assays. Results : 1. Hepatic $PPAR{\alpha}$ target genes, such as ACOX and VLCAD mRNA levels were significantly increased by GGEx18 compared with obese controls. In skeletal muscle, LCAD mRNA expression was stimulated by GGEx16, GGEx17, and GGEx18, whereas MCAD mRNA expression by GGEx17 and GGEx18. $PPAR{\beta}$ target LPL mRNA levels were also increased by GGEx16, GGEx17, and GGEx18 in skeletal muscle, but adipose LPL mRNA levels were decreased. In addition, GGEx18 upregulated UCP mRNA expression in skeletal muslce. 2. $PPAR{\alpha}$ reporter gene expression was increased by GGEx18 in NMu2Li cells compared with vehicle. $PPAR{\alpha}$ and $PPAR{\beta}$ reporter activities were also increased by all GGEx treatments in C2C12 and 3T3-L1 cells. Conclusions : These results suggest that GGEx can act as $PPAR{\alpha}$ and $PPAR{\beta}$ activators, and that GGEx may regulate obesity by stimulating $PPAR{\alpha}$, $PPAR{\beta}$, and UCP activity. Of the 4 compositions, GGEx18 seems to be most effective in improving obesity and lipid disorders.

Effects of Gyeongshingangjeehwan 18 on Pancreatic Fibroinflammation in High-Fat Diet-Fed Obese C57BL/6J Mice

  • Jang, Joonseong;Park, Younghyun;Yoon, Michung
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.341-348
    • /
    • 2018
  • The polyherbal drug Gyeongshingangjeehwan 18 (GGEx18) from Rheum palmatum L. (Polygonaceae), Laminaria japonica Aresch (Laminariaceae), and Ephedra sinica Stapf (Ephedraceae) has traditionally been used as an antiobesity drug in Korean local clinics. This study investigates the effects of GGEx18 on pancreatic fibroinflammation in high-fat diet (HFD)-fed obese C57BL/6J mice and the molecular mechanism involved in this process. After HFD-fed obese C57BL/6J mice were treated with GGEx18 (125, 250, and 500 mg/kg) for 12 weeks, variables and determinants of obesity, pancreatic inflammation, and fibrosis were measured using histology, immunohistochemistry, and real-time polymerase chain reaction. Administration of GGEx18 at 500 mg/kg/day to obese mice decreased body weight gain, mesenteric adipose tissue mass, and adipocyte size. GGEx18 treatment not only reduced mast cells and CD68-immunoreactive cells, but also decreased collagen levels and ${\alpha}$-smooth muscle actin-positive cells in the pancreas of HFD-fed mice. Concomitantly, GGEx18 decreased the expression of genes for inflammation (i.e., CD68 and tumor necrosis factor ${\alpha}$) and fibrosis (i.e., collagen ${\alpha}1$ and transforming growth factor ${\beta}$) in the pancreas of obese mice. These results suggest that GGEx18 may inhibit visceral obesity and related pancreatic fibroinflammation in HFD-fed obese mice.