• Title/Summary/Keyword: Landfarm

Search Result 2, Processing Time 0.016 seconds

The Characteristics of Groundwater and a Field Test for Thermal Insulation of Landfarming of Petroleum Contaminated Soil in Winter Season (유류오염지역의 지하수 수질특성 및 동절기 토양경작법의 온도보전을 위한 현장사례 연구)

  • Cho, Chang-Hwan;Kim, Soon-Heum;An, Jong-Ik;Lee, Yoon-Oh;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.7-14
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of groundwater in the petroleum contaminated site and to evaluate the applicability of house-type landfarm facilities heated with briquette stoves in winter season. The six monitoring wells were installed at the site where pH, dissolved oxygen, and temperature were all measured. Also groundwater contaminants, benzene, toluene, ethylbenzene, xylene and total petroleum hydrocarbon, were analyzed twice. House-type two landfarm facilities ($12m{\times}40m{\times}4.8m$) each installed with four briquette stoves were constructed. During four rounds treatment process, VOCs, moisture, temperature were monitored and soil contaminants were analyzed. The pH was 6.37 and considered subacid and DO was measured to be 3.12 mg/L. The temperature of groundwater was measured to be $9.48^{\circ}C$. The groundwater contaminants were detected only in the monitoring wells within the contaminated area or close to it showing that the groundwater contaminated area was similar to the soil contaminated area. During the landfarm process, 73.3% of VOCs concentration in interior gas was decreased and moisture was lowered from 17.7% to 13.4%. In the morning, at 8:00 am, the temperature was decreased showing soil ($5.5^{\circ}C$) > interior ($4.8^{\circ}C$) > exterior ($3.5^{\circ}C$). In the afternoon, at 2:00 pm, the temperature was soil ($8.6^{\circ}C$) < interior ($9.9^{\circ}C$) < exterior ($11.5^{\circ}C$) with solar radiation. The temperature difference between interior and exterior was $0.7^{\circ}C$ in the morning, but it was $1.6^{\circ}C$ in the afternoon. A total of 130 days were taken for four round landfarm processes. Each process was completed within 33 days showing 80% of cleanup efficiency ($1^{st}$ order dissipation rate(k) = 0.1771).

A Case Study of Landfarming Design Procedures for Remediation of Oil-contaminated Site (유류오염지역 정화를 위한 토양경작법 설계 표준화방안)

  • Cho, Chang-Hwan;Park, Jeong-Gu;Park, Min-Gyu;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.659-666
    • /
    • 2014
  • The purpose of this study was to suggest a standard design procedure of landfarming for clean-up of oil-contaminated soils. The standard design procedure consisted of four main phases; soil characterization, determination of contaminated soil volume, determination of nutrient and microbial doses, and estimation of the total remedial period. This study selected standard design parameter values or ranges among various forms used in environmental engineer communities. Those were determination procedures for the contaminated soil volume, the initial contamination concentration and nutrient doses. The suggested standard design procedure were applied for a landfarm design for remediation of a real oil-contaminated site. Soil texture of the site was classified as sandy clay loam and sandy loam. Total nitrogen and total phosphorus were estimated to be 57.01 mg/kg and 83.40 mg/kg, respectively. Also the viable bacterial numbers was assessed to be $1.78{\times}10^4CFU/g$ dry soil. The amount of TPH contaminated soil was estimated to be $4,092m^3$. With the application of remedial factors, it was estimated that the contaminated soil could be treated through 9 batches with a duration of 315 days for a landfarming unit of $15m{\times}40m{\times}1m$. The amount of liquid microorganisms and fertilizers were recommended to be 4,025L and 4,641kg, respectively.