• Title/Summary/Keyword: Landsat 7

Search Result 268, Processing Time 0.028 seconds

Landsat 8-based High Resolution Surface Broadband Albedo Retrieval (Landsat 8 위성 기반 고해상도 지표면 광대역 알베도 산출)

  • Lee, Darae;Seo, Minji;Lee, Kyeong-sang;Choi, Sungwon;sung, Noh-hun;Kim, Honghee;Jin, Donghyun;Kwon, Chaeyoung;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.741-746
    • /
    • 2016
  • Albedo is one of the climate variables that modulate absorption of solar energy, and its retrieval is important process for climate change study. High spatial resolution and long-term consistent periods are important considerations in order to efficiently use the retrieved albedo data. This study retrieved surface broadband albedo based on Landsat 8 as high resolution which is consistent with Landsat 7. First of all, we analyzed consistency of Landsat 7 channel and Landsat 8 channel. As a result, correlation coefficient(R) on all channels is average 0.96. Based on this analysis, we used multiple linear regression model using Landsat 7 albedo, which is being used in many studies, and Landsat 8 reflectance channel data. The regression coefficients of each channel calculated by regression analysis were used to derive a formula for converting the Landsat 8 reflectance channel data to broadband albedo. After Landsat 8 albedo calculated using the derived formula is compared with Landsat 7 albedo data, we confirmed consistency of two satellite using Root Mean Square Error (RMSE), R-square ($R^2$) and bias. As a result, $R^2$ is 0.89 and RMSE is 0.003 between Landsat 7 albedo and Landsat 8 albedo.

Method of Integrating Landsat-5 and Landsat-7 Data to Retrieve Sea Surface Temperature in Coastal Waters on the Basis of Local Empirical Algorithm

  • Xing, Qianguo;Chen, Chu-Qun;Shi, Ping
    • Ocean Science Journal
    • /
    • v.41 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • A useful radiance-converting method was developed to convert the Landsat-7 ETM+thermal-infrared (TIR) band's radiance ($L_{{\lambda},L7/ETM+}$) to that of Landsat-5 TM TIR ($L_{{\lambda},L5/TM+})$ as: $L_{{\lambda},L5/TM}=0.9699{\times}L_{{\lambda},L7/ETM+}+0.1074\;(R^2=1)$. In addition, based on the radiance-converting equation and the linear relation between digital number (DN) and at-satellite radiance, a DN-converting equation can be established to convert DN value of the TIR band between Landsat-5 and Landsat-7. Via this method, it is easy to integrate Landsat-5 and Landsat-7 TIR data to retrieve the sea surface temperature (SST) in coastal waters on the basis of local empirical algorithms in which the radiance or DN of Lansat-5 and 7 TIR band is usually the only input independent variable. The method was employed in a local empirical algorithm in Daya Bay, China, to detect the thermal pollution of cooling water discharge from the Daya Bay nuclear power station (DNPS). This work demonstrates that radiance conversion is an effective approach to integration of Landsat-5 and Landsat-7 data in the process of a SST retrieval which is based on local empirical algorithms.

Automated Image Receiving and Processing System for Landsat 7

  • Park, Sung-Og;Kim, Moon-Gyu;Kim, Tae-Jung;Ji-Hyeon, Shin;Choi, Myung-jin;Park, Jeong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.573-577
    • /
    • 2002
  • The Landsat Program is the longest running enterprise for acquisition of imagery of the Earth from space. The first Landsat satellite was launched in 1972 and the most recent, Landsat 7, was launched on April 15, 1999. The Landsat satellites have acquired millions of images. The Landsat 7 receiving station is installed at more than 25 sites and will be installed in Korea. This paper will address the work being carried out for the development of image receiving and processing system for the Landsat 7 image data, which will be used at ground station of Landsat 7 in Korea.

  • PDF

The Comparison of Thermal Infrared Satellite Observation for Plume Assessment of Thermal Discharge (온배수 확산 평가를 위한 열적외선 위성관측 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.4
    • /
    • pp.367-374
    • /
    • 2015
  • To examine the effect of thermal discharge from nuclear power plants, Sea Surface Temperature (SST) is one of the most important variables measured by satellite remote sensing. However, the study was not much comparison of field data and satellite SST from operational Landsat 8 Thermal Infrared Sensor(TIRS) and Landsat 7 ETM+. The Landsat 8 TIRS have 2 spilt Thermal Infrared channels but ETM+ uses one channel for extracting of SST. In spite of that this research carried out that Landsat 7 ETM+ have more profitable for correction of SST than Landsat 8 TIRS. The used 15 Landsat 7 and 8 Thermal Infrared data of path/row 114-36 were processed by SST algorithm of ENVI and IDL. The in-situ SST data from KHOA(Korea Hydrographic and Oceanographic Administration) compared with satellite SST and the accuracy of extracted SST were assessed by each field sites in-situ point data with time series satellite SST.

Conjugation of Landsat Data for Analysis of the Land Surface Properties in Capital Area (수도권 지표특성 분석을 위한 Landsat 자료의 활용)

  • Jee, Joon-Bum;Choi, Young-Jean
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.54-68
    • /
    • 2014
  • In order to analyze the land surface properties in Seoul and its surrounding metropolitan area, several indices and land surface temperature were calculated by the Landsat satellites (e.g., Landsat 5, Landsat 7, and Landsat 8). The Landsat data came from only in the fall season with Landsat 5 on October 21, 1985, Landsat 7 on September 29, 2003, and Landsat 8 on September 16, 2013. The land surface properties used are the indices that represented Soil Adjusted Vegetation Index (SAVI), Modified Normalized Difference Wetness Index (MNDWI), Normalized Difference Wetness Index (NDWI), Tasseled cap Brightness, Tasseled cap Greenness, Tasseled cap Wetness Index, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) and the land surface temperature of the area in and around Seoul. Most indices distinguish very well between urban, rural, mountain, building, river and road. In particular, most of the urbanization is represented in the new city (e.g., Ilsan) around Seoul. According to NDVI, NDBI and land surface temperature, urban expansion is displayed in the surrounding area of Seoul. The land surface temperature and surface elevation have a strong relationship with the distribution and structure of the vegetation/built-up indices such as NDVI and NDBI. While the NDVI is positively correlated with the land surface temperature and is also negatively correlated with the surface elevation, the NDBI have just the opposite correlations, respectively. The NDVI and NDBI index is closely associated with the characteristics of the metropolitan area. Landsat 8 and Landsat 5 have very strong correlations (more than -0.6) but Landsat 7 has a weak one (lower than -0.5).

SLC-off Image Correlation and Usability Evaluation by Gapfill Function (Gapfill 함수에 의한 SLC off 영상 보정 및 활용성 평가)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3692-3697
    • /
    • 2012
  • Landsat 7 ETM+ sensor is getting imageries in the SLC-off state since May 31, 2003 due to mechanical defect of SLC(Scan Line Corrector). Therefore additional correction works are required to use these imageries. In this study, Landsat 7 SLC-off imageries were corrected using Gapfill function and compared with Landsat 5 around the same time. Most of pixels in omitted areas due to SLC-off by producing SLC-off imageries and imageries without visual incompatibility could be achieved as there were not unnatural noises. Also, the corrected imageries were performed land cover classification which was compared with the classification result using reference image. To do this, it could be suggested the possibility of SLC-off imagery. Landsat 7 SLC-off corrected imageries will improve the difficult conditions to detect changes of large areas and be used to detect changes of large areas and classify imageries as well as to recover imagery loss arising regionally such as small scale cloud, etc.

Restoration of Landsat ETM+ SLC-off Gaps Using SPOT Image (SPOT 영상을 이용한 Landsat-7의 SLC-off 영상 복원)

  • Kim Hye-Jin;Yu Ki-Yun;Kim Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.229-234
    • /
    • 2006
  • On May 31, 2003. Landsat 7 experienced an anomaly causing the Scan Line Corrector(SLC) to stop functioning normally. The SLC-off causes individual scan lines to alternately overlap and then leave large gaps at the edge of the Image. A many scientists with ongoing experience using ETM+ data evaluated the scientific usability and validity of Landsat 7 products containing the SLC anomaly The best reference scene for gap-filling is the other SLC-on Landsat scene that provide same resolution, few changes, and similar data acquisition. But receiving of Landsat imagery is not stable in Korea. So SPOT image can be another alternative solution because it is a steady-state multispectral satellite image as Landsat image. In this study, we filled the SLC-off gap s of 2, 3, 4 bands using SPOT image by a local regression technique, and assigned the optimum spectral value to gaps of 1, 5, 7 bands based on a spectral adjacency. Through this process, we could restore Landsat SLC-off image and evaluated the accuracy of the results.

  • PDF

Analysis on the Effect of Spectral Index Images on Improvement of Classification Accuracy of Landsat-8 OLI Image

  • Magpantay, Abraham T.;Adao, Rossana T.;Bombasi, Joferson L.;Lagman, Ace C.;Malasaga, Elisa V.;Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.561-571
    • /
    • 2019
  • In this paper, we analyze the effect of the representative spectral indices, normalized difference vegetation index (NDVI), normalized difference water index (NDWI) and normalized difference built-up index (NDBI) on classification accuracies of Landsat-8 OLI image.After creating these spectral index images, we propose five methods to select the spectral index images as classification features together with Landsat-8 OLI bands from 1 to 7. From the experiments we observed that when the spectral index image of NDVI or NDWI is used as one of the classification features together with the Landsat-8 OLI bands from 1 to 7, we can obtain higher overall accuracy and kappa coefficient than the method using only Landsat-8 OLI 7 bands. In contrast, the classification method, which selected only NDBI as classification feature together with Landsat-8 OLI 7 bands did not show the improvement in classification accuracies.

A Correlation Analysis between Land Surface Temperature and NDVI in Kunsan City using Landsat 7 TM/ETM+ Satellite Images (Landsat 7 TM/ETM+ 위성영상을 이용한 군산지역 지표 온도와 NDVI에 대한 상관분석)

  • Lee, Hong-Ro;Kim, Hyung-Moo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.31-43
    • /
    • 2005
  • Four time points of the fractional area data during the 15 years of the highest group of land surface temperature and the lowest group of NDVl of the Kunsan city Chollabuk_do, Korea located beneath the Yellow sea coast, are observed and analyzed their correlations for the intention to detect the changes of urban land cover. As long as the effective contributions of satellite images in the continuous monitoring of the wide area for wide range of time period, Landsat-5 TM and Landsat-7 ETM+ artificial satellite images, acquisited over the Kunsan city area, are surveyed by the compared calibration after quantization and classification of the deviations between TM and ETM+ images substituted approved error correction thresholds such as gains and biases or offsets. This experiment and research applied Landsat-5 TM and Landsat-7 ETM+ artificial satellite images in change detection of urban land cover in urbanized Kunsan city, then detected strong and proportional correlation relationship between the highest group of land surface temperature and the lowest group of NDVI which exceeded R=(+)0.9478, so the proposed Correlation Analysis Model between the highest group of land surface temperature and the lowest group of NDVI will be able to give proof an effective suitability to the land city change detection monitoring.

  • PDF

Sea Surface Temperature Analysis for the Areas near Gwang-Yang Steel Mill using LANDSAT Thermal Data (Landsat 열적외선 위성자료를 이용한 광양제철소 주변 해역 해수표면온도 분석)

  • Kim, Sang-Min;Kim, Chang-Jae;Han, Soo-Hee;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.123-131
    • /
    • 2011
  • Characteristics of sea surface temperature(SST) difference around Gwang-Yang steel Mill where can affect marine ecosystem in Gwang-Yang bay using 25 collected Landsat-7 ETM+ thermal infrared band data from 2000 to 2010. To analyze accuracy of SST from the Landsat-7 ETM+ thermal infrared image, satellite-induced SST was verfied by compared Yeo-Su tide station and Landsat thermal image. As a result, SST from Landsat-7 ETM+ is $1.22^{\circ}C$ lower than sea temperature from Yeo-Su tide station and correlation coefficient resulted in above 0.991 which means that correlation coefficient between Landsat image temperature and field sea temperature is relatively high. Five regions were selected to analyze sea surface temperature between near Gwang-Yang steel mill and the open sea and analyzed timeseries of sea surface temperature seasonally and regionally. Moreover, the additional analysis has been carried out by comparing the averaged temperatures of Gwang-Yang and Soon-Cheon bays using the dataset over a year.