• Title/Summary/Keyword: Lanthanum-loess

Search Result 3, Processing Time 0.019 seconds

Development of Loess Composite for the Control of Phosphorus Release from Lake Sediments (호소 퇴적층으로부터 용출되는 인 제거를 위한 황토 복합체 개발)

  • Shin, Gwan-Woo;Kim, Keum-Yong;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • In this study, loess composites, loess with lanthanum and with aluminum, were made and evaluated for treatment of phosphorus removal in natural water system. Desiccation method for production of loess composite was superior to centrifugation method in obtaining high concentrated composites of lanthanum and aluminum. Washing of loess lanthanum composite by water did not deteriorat the lanthanum concentration in the composite, but this lowered the aluminum concentration of loess aluminum composite. Total of 15 and 37.5% of aluminum contents were removed after first washing treatment in aluminum loess of 0.05% and 0.1% respectively. However, no more aluminum loss was monitored with increase of washing times. Phosphorus removal efficiencies were not decreased with washed loess aluminum composite. Phosphorus removal was successfully achieved by adsorption of phosphate to loess composite at pH range of 5.0 ~ 8.0. Freundlich and Langmuir adsorption isotherm was observed in the adsorption of phosphate for loess composite. Dosages of 0.05% and 0.1% lanthanum composite for 95% of phosphorus removal could reduce its usage amount to 25% and 50%, respectively, comparing with dosage of loess alone. Dosages of 0.05% and 0.1% aluminum composite could reduce its usage amount to 48% and 63%, respectively.

Phosphorus Removal Characteristic of the Aluminum (III)-loess Composite (알루미늄-황토 복합체의 인 제거 특성)

  • Shin, Gwan-Woo;Kim, Jin-Sik;Kim, Keum-Yong;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.530-535
    • /
    • 2011
  • In this work, the adsorption characteristic of the composites by adding loess with aluminum ("Al-loess") and Loess with lanthanum ("La-loess") which have been developed to effectively remove phosphorus, the substance which causes the eutrophic lake has been evaluated. According to the result of the work, as the amount of aluminum or lanthanum put in 1g of loess increases, the combined amount also increases accordingly. When the loess with no aluminum or lanthanum attached was used, the rate of removing phosphorus was different in comparison with the case of using the composites of 0.5, 1 and 2 mg of aluminum and 0.5, 1 and 3 mg of lanthanum in each gram of loess. It was observed the amount required to remove 1 mg $PO_4^{3-}$-P/L of phosphorus completely is approximately 2 to 10 times less for the composite of Al-loess than loess alone. Also, in case of the composite of La-loess, the amount was decreased by about 1.5 to 10 times. In order to observe the rate of adsorption phosphorus with Al-loess and La-loess, the composites were used for the observation up to three times by water washing. As a result, the water washing of the composite did not affect phosphorus removal. According to the effect of pH, there is a high rate of removing phosphorus in the pH range of 5~8. It seems that the developed composite will effectively remove phosphorus when it is spread in the natural water system. Also, since Al-loess and La-loess composites are rapidly precipitated within 30 minutes, it is stabilized quickly at the bottom of the eutrophic lake and becomes responsible for the removal of phosphorus in water and eluted from the water and the sedimentary layer.

Evaluation of Lanthanum(III)-Loess Composite as an Adsorbent for Phosphate Removal (인 제거를 위한 흡착제로서 란타늄-황토 복합체의 흡착특성)

  • Shin, Gwan-Woo;Choo, Yeon-Duk;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.143-148
    • /
    • 2011
  • In this work, a composite formed by adding loess with lanthanium ("La-Loess") was proposed for effective removal of phosphate found in confined water bodies such as lake and reservoir. It was found that the theoretical maximum amount of lanthanum that can be attached to Loess was 2.68 mg La/g Loess. The phosphate removal was enhanced as an added amount of La-Loess composite increased. Furthermore, there was a noticeable difference in phosphate removal between Loess and La-Loess as the latter required 1.5 to 10 times less Loess than the former. Both Isotherm equations of Freundlich and Langmuir can be used to explain the phosphate adsorption characteristics in using La-Loess composites. The phosphate removal was very effective in the pH range of 5~8, which means that the proposed adsorbent can be directly applied to natural water without adjusting pH. Also, the La-Loess composites were well settled within 30 min without causing turbidity in water. Consequently, the proposed La-Loess can be strongly recommended for phosphate removal in confined water bodies.