• Title/Summary/Keyword: Large repetitive load test

Search Result 6, Processing Time 0.03 seconds

Evaluation of Dynamic Properties of Trackbed Foundation Soil Using Mid-size Resonant Column Test

  • Lim, Yujin;Nguyen, Tien Hue;Lee, Seong Hyeok;Lee, Jin-Wook
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2013
  • A mid-size RC test apparatus (MRCA) equipped with a program is developed that can test samples up to D=10 cm diameter and H=20 cm height which are larger than usual samples used in practice. Using the developed RC test apparatus, two types of crushed trackbed foundation materials were tested in order to get the shear modulus reduction curves of the materials with changing of shear strain levels. For comparison purpose, large repetitive triaxial compression tests (LRT) with samples of height H=60cm and diameter D=30 cm were performed also. Resilient modulus obtained from the LRT was converted to shear modulus by considering elastic theory and strain level conversion and were compared to shear modulus values from the MRCA. It is found from this study that the MRCA can be used to test the trackbed foundation materials properly. It is found also that strain levels of $E_{v2}$ mostly used in the field should be verified considering the shear modulus reduction curves and proper values of $E_{v2}$ of trackbed foundation must be used considering the strain level verified.

Characteristics of Resilient Modulus of Reinforced-Roadbed Materials Using Large Repetitive Triaxial Test (대형반복삼축시험에 의한 강화노반 재료의 회복탄성계수 특성 분석)

  • Lim, Yu-Jin;Lee, Jin-Ug;Hwang, Jung-Kyu;Park, Mi-Yun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1115-1122
    • /
    • 2011
  • Reinforced-Roadbed materials are usually composed of crushed stones. Repeated load application can induce deformation in the reinforced-roadbed layer so that it causes irregularity of track. Thus it is important to develop a prediction model of elastic modulus based on stress-strain relation under repeatitive load in order to investigate behavior of reinforced roadbed. The prediction model of elastic modulus of the material can be obtained from repeated triaxial test. However, a proper size of the sample for the test must be used. In this study, a large repeatitive triaxial test apparatus with the sample size of diameter of 30 cm and height of 60cm was adapted for performing test of the crushed stone reinforced-roadbed considering large particle size to get resilient modulus Mr. The obtained resilient modulus was compared to shear modulus obtained from mid size resonant column test. The sample size effect is somewhat large enough so that it is required to design a scale factor based on similarity law in order to use smaller samples for getting elastic modulus of the crushed stone reinforced-roadbed material. A scale factor could be obtained from this study.

  • PDF

Development of Permanent Deformation Prediction Model for Trackbed Foundation Materials based on Shear Strength Parameters (강화노반 쇄석재료의 전단강도특성을 고려한 영구변형예측모델 개발)

  • Lim, Yujin;Hwang, Jungkyu;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.623-630
    • /
    • 2012
  • Formation used as trackbed foundation for providing vertical bearing capacity onto rail foundation are composed of crushed stones usually with certain type of grain size distribution. Permanent deformation in trackbed foundation can be generated by increasing number of load repetition due to train traffic increases, causing track irregularity. In this study, a specially prepared trackbed foundation materials (M-40) used in Korea has been tested using a large repetitive triaxial compression apparatus in order to understand resilient and permanent deformation characteristics of the material. From these test results, resilient and permanent deformation characteristic are analyzed so that a permanent deformation model is developed which can consider number of load repetition N, confining stress (${\sigma}_3$), shear stress ratio(${\tau}/{\tau}_f$) and stiffness of the material.

Evaluation of Permanent Deformation Characteristics in Crushed Subbase Materials Using Shear Stress Ratio and Large Repeated Triaxial Compression Test (대형반복삼축시험과 전단응력비 개념을 이용한 쇄석 보조기층의 영구변형 특성평가)

  • Lim, Yu-Jin;Kim, In-Tae;Kwak, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.41-50
    • /
    • 2011
  • It is well-known that pavement is easily damaged by several factors including permanent deformation and fatigue crack, causing service life of the pavement to be shorter than expected. It is very important to predict amount of permanent deformation for designing pavement and developing design method of pavement. A new model of permanent deformation of pavement materials based on concept of shear stress ratio has been proposed because the lower pavement materials are highly affected by shear strength of the material. In this study a large repetitive triaxial load test has been adapted for performing test of permanent deformation of crushed subbase materials. The test procedure which includes concept of shear stress ratio has been newly developed. Several important model parameters can be obtained from the test that can be used for making correct permanent deformation model of the material.

Analysis of Permanent Deformation under Repetitive Load Based on Degraded Secant Modulus (할선탄성계수를 이용한 반복하중 하 지반의 영구변형 해석)

  • Ahn, Jaehun;Oh, Jeongho;Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.15-21
    • /
    • 2013
  • The analysis of long-term performance of pavement sections under wheel loads is normally conducted in two separated steps. First the resilient behavior of the pavement is calculated assuming the pavement is a layered or discrete elastic medium, and then the permanent deformation is evaluated based on empirical permanent displacement equations. Material properties required in both steps can be obtained from cyclic triaxial tests, in other words, resilient and permanent deformation tests. While this analytical approach is simple and convenient, it does not consider the modulus degradation caused by cyclic loads, and some types of reinforcements such as geosynthetic cannot be modeled in this type of analysis. A model for degraded secant modulus is proposed and suggested to be used for the analysis of permanent behavior of unpaved roadway sections. The parameter for suggested model can be obtained from cyclic triaxial tests, regular practice in pavement engineering. Examples to estimate the model parameters are presented based on both laboratory permanent deformation test and large-scale plate load test.

An analysis on Flicker Phenomenon of a Fluorescent lights for the commercial operating EMU (영업운행 전동차 객실형광등의 플리커(Flicker) 현상에 관한 분석 연구)

  • Ha, Jong-Eun;Han, Seon-Ho;Park, Jae-Hong;Lee, Dae-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1240-1246
    • /
    • 2006
  • Generally, there are two types of main factors to affect output power quality of a auxiliary power supply an EMU(electric multiple unit). One is a voltage flicker by amplitude modulation of short time and air compressors. The other is repetitive motion of large capacity motor such as air compressors, HVAC unit etc. in main factors. This paper compared two kinds of fluorescent lamp, 32W (after remodeling interior) and 40W(before remodeling interior) and measured the light output varying input power(AC220V) for a flicker phenomenon related power supply of lamps in EMU. Also, we analyzed a flicker considering EMU operating time and density in order to grasp main factors of a load change to cause a voltage change. As a results of test, a 40W fluorescent lamp was more insensitive with 20.26% degree an eye recognition degree sides about changes of the input power and lower with 19.9% voltage side generating flicker compare with fluorescent lamp 32W. Also, we confirmed the fact which the fluorescent lamp flicker was generated by varying fluorescent lamp output voltage when the commercial EMU was in high driving density and at the busy time. Additionally, we confirmed the frequency band which an EMU passenger could feel sensitively blinking of a fluorescent lamp was visually $8Hz{\sim}15Hz$.

  • PDF