• Title/Summary/Keyword: Laser Interferometer

Search Result 366, Processing Time 0.034 seconds

A Study on the Portable Micro Displacement Measurement Using Laser Interferometer (레이저 간섭계를 이용한 이동형 미세 변위 측정에 관한 연구)

  • Choi, K.H.;Yang, H.C.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.99-103
    • /
    • 2006
  • The laser interferometer has been used for measurement of the micro displacement error. Although the laser interferometer is widely accepted as a tool for measurement of motion accuracy, the set-up procedure is time-consuming because of the strict requirement on alignment between a laser head and optic units. This paper addresses the development of a laser interferometer to measure the micro displacement for a micro machine. The portable laser interferometer which integrates a laser probe and optics, is developed for the convenient measurement. For the experiment, moving mirror set up on the micro stage. The velocity decoding board is also added to calculate doppler shift frequency directly. The output signal is obtained and analyzed by LabView. Finally experiments are found out the relation between micro displacement and output signal.

  • PDF

Nonlinearity error compensation in heterodyne laser interferometer using Dual-EKF (Dual-EKF를 이용한 헤테로다인 레이저 간섭계의 비선형 오차보정)

  • Lee, Sang-Chul;Lee, Woo-Ram;You, Kwan-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.310-312
    • /
    • 2009
  • The heterodyne laser interferometer has been widely used in precise measurement field. However, the accuracy is limited by the nonlinearity error caused from incomplete laser sources and nonideal optical components. In this paper, we propose the Dual-EKF which estimates states and weights simultaneously to improve the resolution of heterodyne laser interferometer. As a proof, we demonstrate the effectiveness of our proposed method through experimental results.

  • PDF

Development of a 4-axis Auto-aligning System for Precision Measurement of 2-axis Feeding Systems Using Laser Interferometer (2축 이송계 정밀도 측정을 위한 레이저 간섭계 4축 자동정렬장치 개발)

  • Kim, Hyun-Soo;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.75-80
    • /
    • 2000
  • Although laser interferometer is widely accepted as a tool for measurement of motion accuracy the set-up procedure is time-consuming because of the strict requirement on alignment between laser head and optic units. This paper presents a 4-axis auto-aligning system which is useful for easy set-up of laser interferometer so as to evaluate precision of a 2-axis feeding system. This paper proposes two ideas for alignment in laser interferometer set-up: one is use of mirror and retroreflectors. and the other is taking advantage of the pre-defined movement and peculiar characteristic of retroreflecotrs. The pros and cons of the two methods are discussed. Illustrative experimental results are presented in which the developed system is applied to a XY table.

  • PDF

Parallelism Measurement of Rolls by Using a Laser Interferometer (레이저 간섭계를 이용한 롤 평행도 측정 기술)

  • Choi, Jong Geun;Kim, Seongeun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.642-646
    • /
    • 2014
  • This research describes the measurement of roll parallelism by a laser interferometer. Parallelism among rolls is an important factor for improving the precision of printing devices. A laser interferometer, which is a device for the precise measurement of distance, can be utilized to measure parallelisms between rolls. To measure distance between two rolls by using a laser interferometer, the laser must not be severed during measurement. To achieve this condition, a linear motion guide was installed to each roll being measured, and continuous measurement of distance between two rolls was implemented by the simultaneous control of two mirrors installed on the guides. The method to measure parallelism between two rolls presented in this research can be utilized to improve printing precision by enhancing parallelism between rolls in printing devices.

AFM modulation algorithm for the high speed measurement using a heterodyne laser interferometer (헤테로다인 레이저 간섭계에서 고속 측정을 위한 주파수 변조 알고리즘)

  • Choi H.S.;Yoon H.S.;Park K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.922-925
    • /
    • 2005
  • This article describes a FM modulation algorithm to increase the measurement speed by increasing the beat frequency of the laser without acousto-optic modulator(AOM) in the heterodyne laser interferometer. The proposed algorithm can increase the beat frequency of the heterodyne laser which limit the measurement speed by adjusting a carrier frequency through electronic circuit, while AOM is used to shift the frequency of the heterodyne laser in conventional method. Electronic circuit is constructed to modulate the signals from a laser interferometer and a waveform generator. The brier analysis, the measurement scheme of the system, and the experimental results using a Zeeman-stabilized He-Ne laser are presented. They demonstrate that the proposed algorithm is proven to enhance the measurement speed limit by increasing the beat frequency of the heterodyne laser.

  • PDF

Two Dimensional Atomic Force Microscope (서브나노급 정밀도의 2 차원 원자현미경 개발)

  • Lee, Dong-Yeon;Gweon, Dae-Gab
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1778-1783
    • /
    • 2008
  • A compact and two-dimensional atomic force microscope (AFM) using an orthogonal sample scanner, a calibrated homodyne laser interferometer and a commercial AFM head was developed for use in the nanometrology field. The x and y position of the sample with respect to the tip are acquired by using the laser interferometer in the open-loop state, when each z data point of the AFM head is taken. The sample scanner which has a motion amplifying mechanism was designed to move a sample up to $100{\times}100{\mu}m^2$ in orthogonal way, which means less crosstalk between axes. Moreover, the rotational errors between axes are measured to ensure the accuracy of the calibrated AFM within the full scanning range. The conventional homodyne laser interferometer was used to measure the x and y displacements of the sample and compensated via an X-ray interferometer to reduce the nonlinearity of the optical interferometer. The repeatability of the calibrated AFM was measured to sub-nm within a few hundred nm scanning range.

  • PDF

Laser Doppler Vibrometer using the Bulk Homodyne Interferometer (호모다인 간섭계를 이용한 레이저 진동 측정기의 개발)

  • 라종필;경용수;왕세명;김경석;박기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.397-402
    • /
    • 2003
  • The FM demodulation method for a bulk homodyne laser interferometer is presented. The Doppler frequency that represents the surface velocity of a vibrating object is obtained by using the bulk homodyne laser interferometer, and converted to the voltage signal by using the proposed analogue FM demodulation circuit. The DC offsets of the interferent signals that are obtained from the bulk homodyne interferometer are eliminated by using a simple subtraction. The new method for compensation of the asymmetry of each channels is presented. The light power variation of the interferometer is normalized by using the Auto Gain Controller(AGC). The proposed FM demodulation algorithm is proved by the theoretical method, and validated by the experimental results. In experiments, the proposed FM demodulation algorithm is compared with the conventional demodulation methods.

  • PDF

A Study on the Improvement of Measurement Accuracy of Laser Interferometer using the Kalman filter (칼만 필터를 이용한 레이저 간섭계의 측정 정밀도 향상에 관한 연구)

  • Lee, Jea-Ho;Park, Tea-Dong;Jung, Joon-Hong;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1783-1784
    • /
    • 2006
  • A laser interferometer is the unique measurement device that can measure the range up to a few meters with sub-nano resolution and this characteristic makes it as the important sensing device for the emerging nano-mechatronics technologies. The laser interferometer, however, is very sensitive to the environments such as temperature, humidity, sound noises, vibrations and air turbulences and these factors result in a few hundred nano meter errors. There have been many efforts to reduce these environmental errors. The output of the laser interferometer is assumed to be the sum of a real displacement and a Markov process noise. The purpose of this paper is to develop Kalman filter algorithms to reduce the laser interferometer measurement errors by exploiting the information of displacements in position-servo systems.

  • PDF

Adaptive Nonlinearity Compensation in Laser Interferometer using Neural Network (신경망 회로를 이용한 레이저 간섭계의 적응형 오차보정)

  • Heo, Gun-Hang;Lee, Woo-Ram;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.86-88
    • /
    • 2007
  • In the semiconductor manufacturing industry, the heterodyne laser interferometer plays as an ultra-precise measurement system. However, the heterodyne laser interferometer has some unwanted nonlinearity error which is caused from frequency-mixing. This is an obstacle to improve the measurement accuracy in nanometer scale. In this paper we propose a compensation algorithm based on RLS(recursive least square) method and artificial intelligence method, which reduce the nonlinearity error in the heterodyne laser interferometer. With the capacitance displacement sensor we get a reference signal which can be transformed into the intensity domain. Using the back-propagation Neural Network method, we train the network to track the reference signal. Through some experiments, we demonstrate the effectiveness of the proposed algorithm in measurement accuracy.

  • PDF

Squareness Estimation for Coordinate Measuring Machine Using the Laser Interferometer Measurement Based on the Face-Diagonal Method (Face-Diagonal 방법 기반의 레이저 간섭계 측정을 이용한 CMM 의 직각도 추정)

  • Lee, Hoon Hee;Lee, Dong Mok;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 2016
  • The out-of-squareness is one of the error sources that affect the positioning accuracy of machine tools and coordinate measuring machines. Laser interferometer is widely used to measure the position and angular errors, and can measure the squareness using an optical square. However, the squareness measurement using the laser interferometer is difficult, as compared to other errors due to complicated optics setup and Abbe's error occurrence. The effect of out-of-squareness mainly appears at the face-diagonal of the movable plane. The diagonal displacements are also affected by the position dependent geometric errors. In this study, the squareness estimation techniques via diagonal displacement measurement using the laser interferometer without an optical square were proposed. For accurate estimation and measurement time reduction, the errors selected from proposed discriminant were measured. Discrepancy between the proposed technique with the laser interferometer (with an optical square) result was $0.6{\mu}rad$.