• Title/Summary/Keyword: Laser Peening

Search Result 36, Processing Time 0.023 seconds

Analysis of the Effects of Laser Shock Peening under Initial Tensile Residual Stress Using Numerical Analysis Method (수치해석기법을 이용한 초기 인장잔류응력에 대한 레이저 충격 피닝 효과 분석)

  • Kim, Juhee;Lee, Jongwoo;Yoo, Samhyeun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.608-619
    • /
    • 2017
  • In this paper, the effects of parameters related to the residual stress induced due to laser shock peening process to determine mitigation of the initial tensile residual stresses are discussed, such as the maximum pressure, pressure pulse duration, laser spot size and number of laser shots. In order to estimate the influence of the initial tensile residual stresses, which is generated by welding in 35CD4 50HRC steel alloy, the initial condition option was employed in the finite element code. It is found that $2{\times}HEL$ maximum pressure and a certain range of the pressure pulse duration time can produce maximum mitigation effects near the surface and depth, regardless of the magnitudes of tensile residual stess. But plastically affected depth increase with increasing maximum pressure and pressure pulse duration time. For the laser spot size, maximum compressive residual stresses have almost constant values. But LSP is more effective with increasing the magnitudes of tensile residual stress. For the multiple LSP, magnitudes of compressive residual stresses and plastically affected depths are found to increase with increasing number of laser shots, but the effect is less pronounced for more laser shots. And to conclude, even though the initial tensile residual stresses such as weld residual stress field are existed, LSP is enough to make the surface and depth reinforcement effects.

Enhancement of Surface Hardness of Stainless Steel by Laser Peening (레이저피닝을 이용한 스테인리스강의 표면 경도 강화)

  • Lim, H.T.;Lee, M.H.;Kim, P.K.;Park, J.B.;Jeong, S.H.
    • Laser Solutions
    • /
    • v.12 no.3
    • /
    • pp.18-22
    • /
    • 2009
  • Experimental results for the laser shock peening of stainless steels, duplex stainless steel and STS304, for the enhancement of surface hardness are reported. A high power Nd:YAG laser (532 nm, 2nd harmonics) was used to irradiate the workpiece in water at the irradiances of 5, 10, $15\;GW/cm^2$. The surface of a workpiece was covered with Fe or Al foil for protection of the original surface and reduction of laser reflection. The laser pulse densities were varied from $25\;pulse/mm^2$ to $75\;pulse/mm^2$. In the case of the STS304, the surface hardness increased with increasing pulse density and the maximum increase of about 29% was achieved using Fe foil at $10\;GW/cm^2$ and $75\;pulse/mm^2$ conditions. The maximum increase in surface hardness of duplex stainless steel was about 8% at $10\;GW/cm^2$ and $75\;pulse/mm^2$ with also Fe foil. In the case of the Al foil, less increase of surface hardness was obtained, possibly due to the thermal expansion effect.

  • PDF

Sensitivity Analyses of Finite Element Parameters of Laser Shock Peening for Improving Fatigue Life of Metalic components (금속 재료 피로수명 향상을 위한 LSP 유한요소 변수 민감도 해석)

  • Kim, Ju-Hee;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1821-1828
    • /
    • 2010
  • Laser shock peening(LSP) is an innovative surface treatment technique, and it has been successfully used to improve the fatigue performance of metallic components. It is widely known, that cracks caused by metal fatigue occur only at the location where the metal is subject to tension, and not at the location where the metal is subjected to compression. Therefore, LSP can be employed to improve fatigue life because it generates a high-magnitude compressive residual stress on the surface and interior of metallic components. In this study, we analyzed the applicability of the LSP method in improving fatigue performance and evaluated the various parameters that influence the compressive residual stress. Further, we analyzed the change in the mechanical properties such as surface dynamic stress and the compressive residual stress on the surface and interior of metallic components.

Investigation on the Effect of Laser Peening Variables on Welding Residual Stress Mitigation Using Dynamic Finite Element Analysis (동적 유한요소 해석을 통한 용접 잔류응력 이완에 미치는 레이저 피닝 변수의 영향 고찰)

  • Kim, Jong-Sung
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.84-92
    • /
    • 2010
  • 현재 가동 중인 몇몇 가압 경수로 원전 안전 1등급 설비의 이종금속 용접부는 일차수응력부식균열(PWSCC : Primary Stress Corrosion Cracking) 발생의 세가지 조건(민감 재질, 부식 환경, 인장응력)을 동시에 충족하고 있다. 즉, 이종금속 용접부는 PWSCC에 민감한 재질인 Alloy 600 계열 합금으로 제작 또는 용접되어 있으며 고온 수화학 부식 환경 하에 놓여있다. 아울러 오스테나이트 스테인리스 강의 예민화 예방을 위한 용접 후열처리 미실시로 높은 인장 용접 잔류응력이 작용하고 있다. 이러한 이종금속 용접부의 특성상 PWSCC가 발생할 잠재성이 있을 뿐만 아니라 국내외적으로 Alloy 600 계열 합금으로 제작 및 용접된 가압 경수로 원전 안전 1등급 설비의 이종금속 용접부에 실제 PWSCC가 발생된 사례들이 다수 보고되고 있다. 운전 환경 및 재질 변화 없이 PWSCC 발생을 예방하기 위해서는 인장 잔류응력을 이완시켜 낮은 인장 또는 압축 응력화하여야 한다. 이러한 인장 잔류응력 이완방법들로는 PWOL(Pre-emptive Weld Overlay), 레이저 피닝(Laser Peening), MSIP(Mechanical Stress Improvement Process), 워터 제트 피닝(Water Jet Peening), IHSI(Induction Heating Stress Improvement) 방법들이 있는데 공정 시간이 짧고 열 에너지 원이 필요 없으며 전체적인 소성 변형을 야기시키지 않는 레이저 피닝을 본 연구의 대상 방법으로 한다. 본 연구에서는 동적 유한요소 해석을 통해 용접 잔류응력을 이완시키는 레이저 피닝의 효과를 검증하고 용접 잔류응력에 미치는 레이저 피닝 변수의 영향을 고찰하고자 한다. 내부 보수용접이 수행된 경수로 원전 가압기 노즐 이종금속 용접부에 레이저 피닝을 적용한 경우에 대해 상용 유한요소 해석 프로그램인 ABAQUS를 이용하여 동적 유한요소해석을 수행한 결과, 고온 수화학 일차수와 접하는 Alloy 600 계열 합금 내면에서의 인장 잔류응력이 상당히 이완됨을 확인하였다. 또한, 최대충격 압력이 증가할수록, 충격압력 지속시간이 증가할수록, 레이저 스팟 직경이 증가할수록 내표면 인장 잔류응력 이완 정도는 감소하나 이완되는 영역의 깊이는 증가함을 알 수 있다. 또한, 레이저 피닝 방향이 잔류응력 이완에 미치는 영향은 미미함을 알 수 있다.

  • PDF

A Study on the Shot-Peening Effect for Fatigue Life Improvement of Laser Welding Material (레이저 용접재의 피로수명 향상을 위한 쇼트피닝 영향에 관한 연구)

  • Rong, HuaWei;Lee, Hyun-Jun;Jung, Hae-Young;Hur, Sun-Chel;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.57-61
    • /
    • 2010
  • At present, welding technology is not only emphasized in the development of manufacturing technology but its application is also expanding. In these systems, attempts have been made to use SUS as a high-temperature material for special applications, and in improvements in manufacturing technologies bear watching, together with an increase in the use rate. Specifically, three-dimensional wings are often used for fasteners with the purpose of decreasing the weight (정해용, 2007). However, due to developments in welding technology, there has been a recent tendency to replace existing assembly methods with welding. Specifically, if laser welding techniques are applied, the heat-affected zone can be minimized compared toother welding techniques. However, in the case of these special welding techniques, there is an increase in residual stress, which fatally affects the fatigue life. In order to remove the residual stress and its effect on fatigue life, shot-peening is executed. The intention of this study was to obtain the optimal conditions for shot-peening.

Influence of laser peening on fatigue crack initiation of notched aluminum plates

  • Granados-Alejo, Vignaud;Rubio-Gonzalez, Carlos;Parra-Torres, Yazmin;Banderas, J. Antonio;Gomez-Rosas, Gilberto
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.739-748
    • /
    • 2017
  • Notches such as slots are typical geometric features on mechanical components that promote fatigue crack initiation. Unlike for components with open hole type notches, there are no conventional treatments to enhance fatigue behavior of components with slots. In this work we evaluate the viability of applying laser shock peening (LSP) to extend the fatigue life of 6061-T6 aluminum components with slots. The feasibility of using LSP is evaluated not only on damage free notched specimens, but also on samples with previous fatigue damage. For the LSP treatment a convergent lens was used to deliver 0.85 J and 6 ns laser pulses 1.5 mm in diameter by a Q-switch Nd: YAG laser, operating at 10 Hz with 1064 nm of wavelength. Residual stress distribution was assessed by the hole drilling method. A fatigue analysis of the notched specimens was conducted using the commercial code FE-Safe and different multiaxial fatigue criteria to predict fatigue lives of samples with and without LSP. The residual stress field produced by the LSP process was estimated by a finite element simulation of the process. A good comparison of the predicted and experimental fatigue lives was observed. The beneficial effect of LSP in extending fatigue life of notched components with and without previous damage is demonstrated.

Effect of laser shock peening and cold expansion on fatigue performance of open hole samples

  • Rubio-Gonzalez, Carlos;Gomez-Rosas, G.;Ruiz, R.;Nait, M.;Amrouche, A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.867-880
    • /
    • 2015
  • Mechanical fastening is still one of the main methods used for joining components. Different techniques have been applied to reduce the effect of stress concentration of notches like fastener holes. In this work we evaluate the feasibility of combining laser shock peening (LSP) and cold expansion to improve fatigue crack initiation and propagation of open hole specimens made of 6061-T6 aluminum alloy. LSP is a new and competitive technique for strengthening metals, and like cold expansion, induces a compressive residual stress field that improves fatigue, wear and corrosion resistance. For LSP treatment, a Q-switched Nd:YAG laser with infrared radiation was used. Residual stress distribution as a function of depth was determined by the contour method. Compact tension specimens with a hole at the notch tip were subjected to LSP process and cold expansion and then tested under cyclic loading with R=0.1 generating fatigue cracks on the hole surface. Fatigue crack initiation and growth is analyzed and associated with the residual stress distribution generated by both treatments. It is observed that both methods are complementary; cold expansion increases fatigue crack initiation life, while LSP reduces fatigue crack growth rate.

Effect of Surface Treatment on Fatigue Strength of SCM440H (SCM440H 금형강의 표면 처리에 따른 피로 특성 연구)

  • Yeom, Hyunho;Lee, Moon Gu;Lee, Choon Man;Jeon, Yongho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.779-784
    • /
    • 2013
  • Increased efficiency and improved performance associated with light-weight materials were investigated in this study. Numerous studies have investigated surface treatments to improve the fatigue strength of metals. Laser heat treatment is a promising method because the power and spot size can be easily controlled, allowing a small heat affected zone (HAZ). However, changes in the material properties can result; in particular, the material can become more brittle. In this study, a combination of laser heat treatment and vibration peening was proposed to increase fatigue strength without changing the material characteristics. SCM440H was investigated experimentally, and specimens were tested using a giga-cycle ultrasonic fatigue tester. The results show that the combination of these two processes significantly increased the fatigue strength and, furthermore, different fracture types were observed after a small and large number of cycles.

Study on Effect of LSP Process Parameters Using Dimensionless Analysis (무차원 변수 해석을 이용한 LSP 공정변수 영향 분석)

  • Kim, Ju Hee;Kim, Tae Yang;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1141-1149
    • /
    • 2013
  • Dimensional analysis is an important tool for developing mathematical models of physical phenomena in order to understand the effects of laser shock peening(LSP) process parameters. By using the Bucking ${\prod}$ theorem, we proposed an applicable dimensional analysis method to verify the effects of LSP process parameters on the residual stresses. Furthermore, by using finite element analysis, we proposed a finite element method of LSP and discussed various parameters, such as peak pressure, pressure pulse duration, laser spot size, and multiple LSPs.