• Title/Summary/Keyword: Laser host material

Search Result 6, Processing Time 0.031 seconds

New polymeric host material for efficient organic electro phosphorescent devices

  • Jung, Choong-Hwa;Park, Moo-Jin;Eom, Jae-Hoon;Shim, Hong-Ku;Lee, Seong-Taek;Yang, Nam-Choul;Liand, Duan;Suh, Min-Chul;Chin, Byung-Doo;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.843-845
    • /
    • 2009
  • A polymeric host for triplet emitters composed of N-alkylcarbazole and tetramethylbenzene units was successfully synthesized. Efficient energy transfer was observed between this polymeric host and green phosphorescent dyes. The device fabricated using 5 wt% green 1 in the polymeric host as the emitting layer showed the best performance. Thin films of this host-guest system, exhibiting clear stripe patterns could be prepared through the LITI process. The patterned films were then used to fabricate electrophosphorescent devices, which show performance characteristics similar to those of spin-coated devices. The new host material is a good candidate to be used in polymer-based full-color electrophosphorescent light-emitting displays.

  • PDF

LiLa1-xNdx(MoO4)2 Single Crystal Growth by the Czochralski Method (쵸크랄스키법에 의한 LiLa1-xNdx(MoO4)2 단결정 육성 연구)

  • Bae In-Kook;Chae Soo-Chun;Jang Young-Nam;Kim Sang-Bae
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.677-683
    • /
    • 2004
  • Nd:LLM (Nd:LiLa(MoO$_4$)$_2$) single crystals for the laser host material were grown by the Czochralski method. The Nd:LLM grown single crystals cracked easily, and the reasons of cracks are generally related with phase transition, incongruent melting, chemical heterogeneity of composition, geometric thermal structures of imbalance and growth direction. We confirmed that phase transition is not observed by TG-DTA thermal analysis, and the XRD analysis revealed congruent melting in our products. It was confirmed that the volatilization of Li$_2$O composition is the important reason of chemical heterogeneity. The geometric thermal profile of the resistance furnace of our own design was controlled with a crucible height. Also, Nd:LLM crystal affected growth direction, and was the best quality in case of (101) growth direction. The distribution and effective distribution coefficient of Nd$^{3+}$ ion were accomplished by PIXE analysis.s.

Minimally Invasive Laser-Assisted Biopsy of the Oral Lesions for Oral Graft-Versus-Host Disease after Hematopoietic Stem-Cell Transplantation (조혈줄기세포이식후 발생한 이식편대숙주병의 구강병소에 대한 최소침습적 레이저조직생검 증례)

  • Kim, Yun-Mi;Yun, Hee-Jung;Kim, Hyun-Sil;Kim, Kee-Deog;Jung, Bock-Young;Pang, Nan-Sim;Park, Won-Se
    • Journal of Oral Medicine and Pain
    • /
    • v.37 no.3
    • /
    • pp.147-154
    • /
    • 2012
  • Hematopoietic stem-cell transplantation (HSCT) is a treatment for immune deficiency, autoimmune diseases, and hematopoietic malignancies. The main complication of allogenic HSCT is graft-versus-host disease (GVHD). Oral mucosal biopsy is needed for a definitive diagnosis and treatment planning of GVHD, but this procedure causes bleeding and bacteremia in a poor general condition. We evaluated the efficacy of laser-assisted biopsy as a minimally invasive treatment. Three cases were described in this article. All patients' medical records, clinical photographs, and histopathologic findings were reviewed. All patients felt comfortable and no severe complications occurred. The quality of the obtained biopsy material was adequate for a definitive diagnosis of GVHD. Laser-assisted, minimally invasive biopsy of the oral mucosa does not cause bleeding, and it reduces the chances of infection, bacteremia, and postoperative scarring compared to the usual histopathologic biopsy procedure. It would thus be advantageous to use this procedure to biopsy GVHD patients.

Synthesis of the Multifunctional Core/Intermediate/Shell Nanoparticles: Tunable Magnetic and Photoluminescence Properties (자성 및 발광 특성이 조절 가능한 다기능 코어/중간체/쉘 나노 입자 합성)

  • Kim, Mun-Kyoung;Kim, Seyun;Moon, Kyoung-Seok;Shin, Weon Ho;Jeong, Hyung Mo
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.463-470
    • /
    • 2019
  • Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.

Preparation of Y3Al5O12 Nanocrystals by a Glycol Route

  • Bartwal, Kunwar Singh;Kar, Sujan;Kaithwas, Nanda;Deshmukh, Monica;Dave, Mangla;Ryu, Ho-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.151-154
    • /
    • 2007
  • Yttrium aluminum garnet, $Y_3Al_5O_{12}$ (YAG) is an extensively used solid-state laser host material. YAG nanocrystals were synthesized using low-temperature glycol method, a modified sol-gel method performed at low temperature that consists of a mixture of salts that are mostly nitrates in an aqueous media. Single-phase nanocrystalline YAG was obtained at $850^{\circ}C$, which is a much lower temperature than with other techniques such as a wet-chemical technique. The structural characterization is done by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. A crystallite size range of 20-50 nm was observed for the materials prepared at $850-950^{\circ}C$.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.