• 제목/요약/키워드: Laser ignitor

검색결과 3건 처리시간 0.018초

Optimization of a Passively Q-switched Yb:YAG Laser Ignitor Pumped by a Laser Diode with Low Power and Long Pulse Width

  • Kim, Jisoo;Moon, Soomin;Park, Youngin;Kim, Hyun Su
    • Current Optics and Photonics
    • /
    • 제4권2호
    • /
    • pp.127-133
    • /
    • 2020
  • We successfully constructed a passively Q-switched Yb:YAG laser ignitor pumped by a diode laser with low power and long pulse width. To the best of our knowledge, this is the first study to achieve a quasi-MW output power from an optimized Q-switch Yb:YAG laser ignitor by using a pumping diode laser module emitting at under a power of 23 W. The output pulse energy of our optimized laser is 0.98 mJ enclosed in a 1.06 ns pulse width, corresponding to a peak power of 0.92 MW.

OES 방법을 이용한 고에너지 금속 분말 점화용 스팀 플라즈마 특성에 관한 실험적 고찰 (Experimental Investigation of Steam Plasma Characteristics for High Energy Density Metal Powder Ignition Using Optical Emission Spectroscopy Method)

  • 이상협;고태호;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.545-550
    • /
    • 2012
  • 고에너지 금속 분말은 높은 용융점을 가진 산화피막의 점화방해 효과로 인해 점화가 용이하지 않다. 따라서 점화를 위해서는 단시간에 높은 온도의 열적 공간을 형성할 수 있는 점화원이 필요하며 스팀 플라즈마 점화원은 탄화수소 계열의 점화원, 수소-산소 점화원, 레이져 점화원과 다르게 짧은 시간에 안정적으로 5,000 K 이상의 열적 공간을 형성할 수 있다. 또한 스팀을 작동가스로 사용하므로 친환경적이며 경제적이다. 따라서 본 연구는 스팀 플라즈마 점화기를 연소 시스템에 적용하기 위한 기초 연구로서 방출 분광법을 사용하여 플라즈마의 온도 분포 및 화학종을 분석하였으며, 연소시스템에 적용하여 금속 분말의 점화를 가시적으로 확인하였다.

  • PDF

발전소 점화자 팁 부품의 마모 문제 해결을 위한 3D 프린팅 기술을 이용한 부품 제조기술개발 (Wear Problem Improvement Manufacture Technology of Ignitor Tip Component Using 3D Printing Technology)

  • 이혜진;연시모;손용;이낙규
    • 융복합기술연구소 논문집
    • /
    • 제6권2호
    • /
    • pp.35-40
    • /
    • 2016
  • Ignitor tip is a component of burner to start the burning process in power plant. This is used to ignite the coal to a constant operating state by fuel mixed with air and kerosene. This component is composed of three components so that air and kerosene are mixed in the proper ratio and injected uniformly. Because the parts with the designed shape are manufactured in the machining process, they have to be made of three parts. These parts are designed to have various functions in each part. The mixing part mixes the supplied air and kerosene through the six holes and sends it to the injecting part at the proper ratio. The inject part injects mixed fuel, which is led to have a constant rotational direction in the connecting part, to the burner. And the connecting plate that the mixed fuel could rotate and spray is assembled so that the flame can be injected uniformly. But this part causes problems that are worn by vibration and rotation because it is mechanically assembled between the mixing part and the inject part. In this study, 3D printing method is used to integrate a connecting plate and an inject part to solve this wear problem. The 3D printing method could make this integrated part because the process is carried out layer by layer using a metal powder material. The part manufactured by 3D printing process should perform the post process such as support removal and surface treatment. However, while performing the 3D printing process, the material properties of the metal powders are changed by the laser sintering process. This change in material properties makes the post process difficult. In consideration of these variables, we have studied the optimization of manufacturing process using 3D printing method.