• Title/Summary/Keyword: Lateral Movement

Search Result 737, Processing Time 0.033 seconds

A case study on the lateral movement of bridge abutment foundation and repair methods (교대의 측방변위와 대책공법에 대한 사례연구)

  • Lee, Byung-Suk;Lee, Jae-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1359-1369
    • /
    • 2012
  • In the case of using pile foundation to support bridge abutments on soft ground, the soft ground often causes serious troubles such as lateral movement of bridge abutments by lateral surcharges. In this paper, we investigated and measured the amount of strain of a bridge abutment in the south-western part of Korea. To check the stability and possibility of lateral movement of the bridge abutment, we used the four analysis methods and compared those results; lateral movement index, index for decision of lateral movement and infinite element analysis method. We performed soil and ground tests to fine the causes of the strain and lateral movement. After reviwing several types of repair methods, we suggested the anker reinforcement method along with surcharge process method as a proper repair and rehabilitation of the bridge abutment. Our investigation by through the infinite element analysis method confirmed the effectiveness of the anker reinforcement method allong with the surcharge process method.

Comparison of Hip and Lumbopelvic Movement while Hip Lateral Rotating in Individual with Chronic Low Back Pain

  • Kim, Chi-Hwan;Han, Jin-Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.5
    • /
    • pp.241-245
    • /
    • 2017
  • Purpose: This study examined the hip and lumbopelvic movement while the hip was rotating laterally in individuals with chronic low back pain (CLBP). Methods: Sixty healthy subjects and sixty subjects with CLBP were enrolled in this study. Myomotion (Myomotion research pro, Noraxon Inc., German) was used to measure the hip lateral rotation and the lumbopelvic movement. An independent t-test was used to compare the hip lateral rotation and lumbopelvic rotation between the groups. Results: Between healthy males and females, healthy females showed a smaller hip lateral rotation angle (HLRA) than healthy males in the hip lateral rotation test (HLRT). Between the healthy females and females with CLBP, the females with CLBP showed a smaller HLRA and greater lumbopelvic motion than the healthy females in the HLRT, and their lumbopelvic motions occurred earlier during lateral rotation of the hip. Finally, between the males and females with CLBP, the females with CLBP showed a smaller HLRA and greater lumbopelvic motion in the HLRT, and their lumbopelvic motions occurred earlier during lateral rotation of the hip. Conclusion: The results of this study suggest that the CLBP affected the hip lateral rotation, and the lumbopelvic movement depended on gender. In particular, compared to the other groups, the females with CLBP showed a larger lumbopelvic rotation angle and smaller hip lateral rotation angle and lumbopelvic motion occurred early during lateral rotation of the hip.

A Study on Lateral Movement of Bridge Abutment on Soft Ground (연약지반상 교대의 측방이동에 관한 연구)

  • 홍원표;한중근
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.53-66
    • /
    • 1994
  • In case of using pile foundation to support bridge abutments on soft ground, the soft ground often causes serious troubles such as lateral movement of the bridge abutments. The foundation piles in soil undergoing lateral movement is one of the typical passive piles. However, Generally, on design of the piles for abutments, the piles have not been considered as a passive piles; sofar:. Because it is difficult to assess the effect of the lateral movement on the desigin and reasonable design method is not established yet. In this study, several abutments, of which lateral movement was taken place, was investigated. Based on the investigation a criterion was presented to assess the lateral movement of the soft soil under backfill for abutment. By use of the criterion, the lateral movement of abutment could be predicted. As the results of thin study, it was anon that the lateral movement of abutment could be occured when the safety factor of slope stability is lese than either 1.5(without the pile effect) or 1.8 (with the pile effect). Especially, excessive lateral movements were occurred when the safety factor of slope stability is less than either 1.0(without the pile effect) or 1.1 (with the pile effect).

  • PDF

Prediction of Time-dependent Lateral Movement Induced by Differential Shortening in Tall Buildings Using Construction Stage Analysis

  • Ha, Taehun;Kim, Sangdae;Lee, Sungho
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • High-rise buildings move during construction due to time-dependent material properties of concrete (creep and shrinkage), construction sequences, and structural shapes. The building movements, including vertical and horizontal displacements, result from the sum of axial and lateral deformation of vertical members at each level. In addition to the vertical shortenings, the lateral movement induced by differential shortening can have adverse effects on the construction tolerance and serviceability of non-structural elements such as elevators and curtain walls. In this study a construction stage analysis method is developed to predict lateral movement induced by shortening, including the effect of creep and shrinkage. The algorithm of construction stage analysis is combined with the FE analysis program. It is then applied to predict lateral movement of a 58-story reinforced concrete building that was constructed in Kuala Lumpur, Malaysia. Gravity induced lateral movement of this building is predicted by the construction stage analysis. A field three-dimensional laser scanning survey is carried out to verify the prediction results, and satisfactory agreement is obtained.

Method of Reducing Lateral Displacement of Abutment Constructed on Marine Clay Deposits (해안 연약지반상의 교량 구조물 변위 억제)

  • 장용채
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.337-348
    • /
    • 1998
  • Since 1970s, though many effective construction methods have been established to solve soft ground problems which had occurred in the off shore land reclamation and on shore highway construction, lateral movement of structure on soft ground is still a big problem to engineers. In this study an applicability of criteria for determining the lateral movement of the structure in soft ground is examined and most measured data is obtained from 140 bridge abutments in highway construction sites. Characteristics and effectiveness of existing methods that used for deciding amount of lateral movements of abutment are analyzed using the obtained data. From the analysis, a proper method to prevent lateral movement is proposed. This method is confirmed on several case histories which were constructed on marine clay.

  • PDF

A Study on the Lateral Movement of Bridge Abutment Using Centrifuge Test and Numerical Analysis (원심모형시험과 수치해석을 이용한 교대 측방유동에 관한 연구)

  • Yoo, Wan-Kyu;Kim, Ki-Il;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1799-1804
    • /
    • 2010
  • In regard to fill loading structures such as bridge abutments and retaining walls on soft ground, the soft ground undergoes excessive deformation, which causes the lateral movement of the ground, resulting in increased risk of much damage. In this study, a centrifuge model test was conducted to check the possibility of lateral movement of a bridge abutment during back filling in a field, and a numerical analysis considering the lateral movement of the bridge abutment under the influence of the counterweight fill method applied during construction was carried out by using MIDAS/GTS as the FEM(Finite Element Method) program. The results of this study showed that the lateral movement of the abutment can exceed the allowable lateral movement value(15mm), and that the counterweight fill method was effective for the stability of the lateral movement.

A Study on Lateral Movement of Improved Soft Ground under Embankment (성토하부 개량된 연약지반의 측방이동에 관한 연구)

  • Hong, Won-Pyo;Han, Jung-Geun;Park, Jae-Seok;Kim, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1094-1101
    • /
    • 2005
  • The stability of embankment on the soft ground has included problems on stabilities of embanked body and soft soil, which related with vertical displacement and lateral movement of the soft ground especially. The judge methods for the potentialities of lateral movement have been used in order to stabilization assessment during and after construction of the embankment. In this study, the judge methods on the improved soft ground suggested, which compared with exist judge methods on lateral movement. It is due to recent trend using embanked structures on the soft ground most of improved.

  • PDF

Evaluation of Stability about Lateral Soil Movement of Bridge Abutment Constructed on Soft Ground (연약지반 위에 시공되는 교대의 측방유동에 대한 안정성 평가)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Jeon, Sang-Hyun
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.25-32
    • /
    • 2010
  • In this paper stability about lateral soil movement of bridge abutment constructed on the soft ground, reinforced with the sand compaction pile (SCP) and the preconsolidaton methods, was evaluated by using the centrifuge testing facility which stress conditions in field could be reconstructed in the laboratory. The layouts of model such as ground condition, sand compaction piles and abutment was determined on the basis of similitude law with the reduced scale of 1/200. Construction sequences of installing SCP, preparing reclaimed ground, preconsolidating ground and building the piled bridge abutment were reconstructed during centrifuge modelling and measurements of movement were followed in each sequence. From analyzing the results of measuring movements of the model abutment and the ground, measured lateral movement of model abutment was found to be within the allowable value so that stability of abutment against lateral sliding was secured.

  • PDF

The Measurement Method of Lateral Displacement in Bridge Abutment. (교량구조물의 측방이동 측정방법에 관한 연구)

  • 장용채
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.115-124
    • /
    • 2000
  • This study is a suggest a measurement method of lateral displacement, which can be used to judge the stability of bridge abutment on soil undergoing lateral movement. The abutment of bridge on soft foundation makes lateral movement due to the settlement of back fill and lateral flow. To measure the displacement of such a abutment, there are a lot of indirect method for measurement such as survey of leveling or inclinometer gauge around the abutment. But all of them are not sufficient to confirm the ground behavior and measure the exact lateral behavior of structure. As making the structure and pile cooperatively by measuring the movement of lateral displacement, for measuring the abutment displacement precisely by using the inclinometer. In this work, we try to suggest efficient measuring method of abutment displacement and its application.

  • PDF

A Case Study on the Application of EPS Construction Method Considering Abutment Displacement in Soft Ground (연약지반에서의 교대변위를 고려한 EPS공법의 적용사례 연구)

  • Kang, Hee-June;Oh, Ill-Rok;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.698-705
    • /
    • 2004
  • Application of structural load on soft ground can cause lateral movement as well as ground break due to pressing and shearing of ground. Especially, abutment supported by pile foundation can make pile deformed due to lateral movement of ground in order to have harmful effect on structure. According to the result of this study, it is required to consider disturbance of weak soil layer when using lateral movement countermeasure method by EPS construction method as a result of performing study on safety review and EPS construction method with respect to this based on site where lateral movement occurs due to backside soil filling load at bridge abutment installed on weak ground, and it is required to sufficiently consider soil reduction during design of EPS construction method due to lateral movement deformation of soft clay layer by losing ground horizontal resistance force due to plasticity of ground around pile as well as combination part damage with pile head and expansion foundation.

  • PDF