• Title/Summary/Keyword: Lateral force

Search Result 1,229, Processing Time 0.027 seconds

A Measurement Apparatus of Lateral Restoring Force Exerted on Electrostatically Suspended Object (정전부상체에 작용하는 횡방향 복원력 측정장치)

  • Jeon Jong Up;Park Ki-Tae;Park Kyu-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.60-69
    • /
    • 2005
  • In electrostatic suspension system of thin plates like a silicon wafer or an aluminum disk for hard disk applications, the lateral restoring force exerted on a suspended object plays an important role since the lateral motion of the suspended object, owing to the inherently stable restoring forces, can be passively stabilized without any active control of it. This paper reports about the measurement apparatus of the lateral restoring force originating from a relative translation of the suspended object with respect to the electrodes-for-suspension. An approximate calculation of the lateral force in disk-shaped objects, the structure of the measurement apparatus, a measurement method, stabilization condition and the guideline in designing the measurement apparatus are described. Experimental results obtained by using a 3.5-inch aluminum disk as a suspended object are presented as well in order to assess the magnitude of lateral force and stiffness, and also verify the usefulness of the measurement apparatus.

Lateral Force Calibration of Colloidal Probe in Liquid Environment Using Reference Cantilever (기준 외팔보를 이용한 액체 환경에서 Colloidal Probe의 수평방향 힘 교정)

  • Je, Youngwan;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • There is an indispensable need for force calibration for quantitative nanoscale force measurement using atomic force microscopy. Calibrating the normal force is relatively straightforward, whereas doing so for the lateral force is often complicated because of the difficulty in determining the optical lever sensitivity. In particular, the lateral force calibration of a colloidal probe in a liquid environment often has a larger uncertainty as a result of the effects of the epoxy, the location of the colloidal particle on the cantilever, and a decrease in the quality factor. In this work, the lateral force of a colloidal probe using a reference cantilever with a known spring constant was calibrated in a liquid environment. By obtaining the spring constant and the lateral sensitivity at the equator of a spherical colloidal particle, the damage to the bottom surface of the colloidal particle could be eliminated. Further, it was shown that the effect of the contact stiffness on the determination of the lateral spring constant of the cantilever could be minimized. It was concluded that this method can be effectively used for the lateral force calibration of a colloidal probe in a liquid environment.

A Study on the V-skew Model for Minimization of Detent Force and Lateral Force in PMLSM (PMLSM의 디텐트력 및 Lateral Force 최소화를 위한 V-skew 모델에 관한 연구)

  • Hwang, In-Cheol;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.390-397
    • /
    • 2008
  • Permanent Magnet Linear Synchronous Motor (PMLSM) has high efficiency, high energy density, and high control-ability. But, the detent force always is produced by the structure of slot-teeth. There are the disadvantages such as noise and vibration of the apparatuses are induced and the control ability is curtailed because detent force acts as thrust ripple. Therefore, the detent force reduction is an essential requirement in PMLSM. Generally, the method, skewing permanent magnet or slot-teeth, is used to reduce the detent force. But the thrust is decreased at the same time. If permanent magnet is skewed, the lateral force which operates as the perpendicular direction of skew direction is generated in linear guide of PMLSM. So, V-skew model is proposed for the reduction of lateral force. The lateral force acts as braking force in linear motion guide, and it has bad influence to the characteristics of PMLSM. However, these problems will not be solved by 2-dimensional Finite Element Analysis (FEA). So, in this paper 3-dimensional FEA is applied to analyze the PMLSM where permanent magnet is skewed and has overhang. The detent force and thrust characteristics considering skew and overhang effects of permanent magnet are analyzed by 3-dimensional FEA and the results are compared with experimental values to verify the propriety of analysis.

The Safety of Maneuverability Based on the Hydrodynamic Forces Acting on ship hull under the Lateral Berthing

  • Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.625-630
    • /
    • 2003
  • In order to keep the safety of maneuverability under the lateral berthing, it is necessary to estimate the magnitudes and properties of the hydrodynamic forces acting on ship hull quantitatively. In this paper, CFD technique is used to calculate the steady lateral force according to the water depth for Wigley model under the unsteady lateral berthing. The numerical results are analysed into the steady lateral force and the transitional lateral force, and some of reviews for the safety of maneuverability relating to the lateral berthing are discussed based on the computed hydrodynamic forces.

Design of Lateral Force Estimation Model for Rough Terrain Mobile Robot and Improving Estimation Reliability on Friction Coefficient (야지 주행 로봇을 위한 횡 방향 힘 추정 모델의 설계 및 마찰계수 추정 신뢰도의 향상)

  • Kim, Jiyong;Lee, Jihong;Joo, Sang Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • For a mobile robot that travels along a terrain consisting of various geology, information on tire force and friction coefficient between ground and wheel is an important factor. In order to estimate the lateral force between ground and wheel, a lot of information about the model and the surrounding environment of the vehicle is required in conventional method. Therefore, in this paper, we are going to estimate lateral force through simple model (Minimal Argument Lateral Slip Curve, MALSC) using only minimum data with high estimation accuracy and to improve estimation reliability of the friction coefficient by using the estimated lateral force data. Simulation is carried out to analyze the correlation between the longitudinal and transverse friction coefficients and slip angles to design the simplified lateral force estimation model by analysing simulation data and to apply it to the actual field environment. In order to verify the validity of the equation, estimation results are compared with the conventional method through simulation. Also, the results of the lateral force and friction coefficient estimation are compared from both the conventional method and the proposed model through the actual robot running experiments.

Integrated Chassis Control with Electronic Stability Control and Active Front Steering under Saturation of Front Lateral Tire Forces (전륜 횡력의 포화를 고려한 ESC와 AFS의 통합 섀시 제어)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.903-909
    • /
    • 2015
  • This article presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under saturation of front lateral tire force. Regardless of the use of AFS, the front lateral tire forces can be easily saturated. Under the saturated front lateral tire force, AFS cannot be effective to generate a control yaw moment needed for the integrated chassis control. In this paper, new integrated chassis control is proposed in order to limit the use of AFS in case the front lateral tire force is saturated. Weighed pseudo-inverse control allocation (WPCA) with variable weight is adopted to adaptively use the AFS. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From simulation, the proposed integrated chassis control is effective for vehicle stability control under saturated front lateral tire force.

Improved electrode pattern design for lateral force increase in electrostatic levitation system

  • Woo, Shao-Ju;Jeon, Jong-Up;higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.311-314
    • /
    • 1996
  • In contactless disk handling systems based on electrostatic suspension in which the stator is to be transferred, the limited stiffness in lateral direction severely restricts the achievable translational acceleration. In existing stator electrode pattern designs, the magnitude of the lateral force is determined by the magnitude of the control voltages which are applied to the individual electrodes to levitate the disk stably. As a result, the lateral force cannot be set arbitrarily. A new stator electrode pattern is presented for the electrostatic levitation of disk-shaped objects, in particular silicon wafers and aluminum hard disks, which allows the lateral forces to be controlled independently from the levitation voltages. Therefore, greater lateral forces can be obtained, compared with the existing stator designs. Experimental results will be presented for a 4-inch silicon wafer that clearly reveal the increased lateral stiffness by using the proposed stator electrode compared to the conventional electrode pattern.

  • PDF

Effect of Contact Stiffness on Lateral Force Calibration of Atomic Force Microscopy Cantilever (원자 현미경 탐침의 수평방향 힘 교정에 미치는 접촉 강성의 영향)

  • Tran, Da Khoa;Jeon, Ki-Joon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.289-296
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used for imaging surfaces and measuring surface forces at the nano-scale. Force calibration is important for the quantitative measurement of forces at the nano-scale using AFM. Normal force calibration is relatively straightforward, whereas the lateral force calibration is more complicated since the lateral stiffness of the cantilever is often comparable to the contact stiffness. In this work, the lateral force calibrations of the rectangular cantilever were performed using torsional Sader's method, thermal noise method, and wedge calibration method. The lateral optical lever sensitivity for the thermal noise method was determined from the friction loop under various normal forces as well. Experimental results showed that the discrepancies among the results of the different methods were as large as 30% due to the effect of the contact stiffness on the lateral force calibration of the cantilever used in this work. After correction for the effect of contact stiffness, all the calibration results agreed with each other, within experimental uncertainties.

The Effect of Higher Vibration Modes on the Design Seismic Load (고차진동모드의 영향을 고려한 충지진하중)

  • 이동근;이석용;신용우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.73-78
    • /
    • 1990
  • In current practice of earthquake resistant design the equivalent lateral force procedure is widely used for its simplicity and convenience. But the equivalent lateral force procedure is derived based on the assumption that the dynamic behavior of the structure is governed primarily by the fundamental vibration mode. Therefore proper prediction of dynamic responses of the structure is unreliable using the equivalent lateral force procedure when the effect of higher vibration modes on the dynamic behavior is negligible. In this study design seismic load which can reflect the effect of higher vibration modes is proposed from the point of view of proper assessment of story shears which have the major influence on the design moment of beams and columns. To evaluate the effect of higher modes, differences between the story force based on the equivalent lateral force procedure specified in current earthquake resistance building code and the one based on modal analysis using design spectrum are examined. From these results improved design seismic load for the equivalent lateral force procedure which can reflect the effect of higher vibration modes is proposed.

  • PDF

Carbody Lateral Displacement of Railway Vehicle According to 2nd Lateral Damper and Track Characteristics (철도차량 2 차 횡댐퍼 및 궤도특성에 따른 차체 횡변위 변화 연구)

  • You, Won-Hee;Shin, Yu-Jeong;Hur, Hyun-Moo;Park, Joon-Hyeok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.722-728
    • /
    • 2012
  • In railway vehicle, riding comfort depends mainly on the secondary lateral damper and track condition. When the damping force of lateral damper becomes abnormal condition or the track condition is worse, the running stability and ride comfort of the railway vehicles go down. In addition, the lateral motion of carbody is increased. Therefore, the lateral motion of carbody is reviewed carefully by considering lateral damping force and track condition of the railway line in design stage. In this study, the lateral displacement of carbody was studied in accordance with lateral damping force and track condition. The target vehicle is EMU for subway line.

  • PDF