• Title/Summary/Keyword: Launch environment

Search Result 297, Processing Time 0.026 seconds

Development of an Efficient Notching Toolkit for Response Limiting Method

  • Shin, Jo Mun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.40-46
    • /
    • 2021
  • At launch, satellites are exposed to various types of structural loads, such as quasi-static loads, sinusoidal vibrations, acoustic/random vibrations, and shocks. The launch environment test is aimed at verifying the structural stability of the test object against the launch environment. Various types of launch environments are simulated by simple vibration, acoustic, and shock tests considering possible test conditions in ground. However, the difference between the launch environment and the test environment is one of the causes of excessive testing. To prevent overtesting, a notching technique that adjusts the frequency range and the input load considering the design load is applied. For notching, specific procedures are established considering the satellite development concept, selected launch vehicle, higher system requirements, and test target level. In this study, the notching method, established procedure, and development of a notching toolkit for efficient testing are described.

LAUNCH ENVIRONMENT TEST OF KOMPSAT-1 SATELLITE

  • Lee, Sang-Seol;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1234-1239
    • /
    • 2000
  • KOMPSAT-1(Korea Multi-Purpose Satellite), which opened the space era in Korean peninsula, was developed from 1994 and launched successfully in December of 1999 at VAFB, USA. This paper presents a launch environment test of KOMPSAT and a short description of environment test facilities at Korea Aerospace Research Institute as well. The launch environment tests of KOMPSAT-1 satellite, such as vibration, acoustic, pyro-shock and mass properties measurement test, were performed during its system integration and test period. The participating engineers concluded that KOMPSAT-1 satellite would withstand environment during its launch period.

  • PDF

Launch Environment Test Results of Koreasat-3 (무궁화위성 3호 발사환경시험 결과분석)

  • Yang, Koon-Ho;Choi, Seong-Bong;Kim, Wone-Chul;Kim, Seong-Joong;HwangBo, Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1252-1258
    • /
    • 2000
  • Koreasat-3 was successfully launched by an Ariane IV launch vehicle on September 5, 1999. Although the primary purpose of the satellite is to replace Koreasat-l, it also can extend its communication service coverage over the Asia-Pacific region. A spacecraft is subjected to severe dynamic loads during launch period. To verify the safety of spacecraft under the launch environment, dynamic tests should be performed such as sine sweep, acoustic and separation shock tests. This paper presents the launch environment test results of Koreasat-3. A total of 188 acceleration responses was measured and compared with the design requirements of components and spacecraft. Dynamic characteristic change was also investigated by comparing between low-level pre/post vibration results. From the review of test results, it is concluded that Koreasat-3 was designed and manufactured with the margin of safety enough to survive the launch loads of Ariane IV.

  • PDF

Launch Environment Requirements for Earth Observation Satellite (지구관측위성의 발사환경시험 요구조건)

  • Kim, Kyung-Won;Kim, Sung-Hoon;Kim, Jin-Hee;Rhee, Ju-Hun;Hwang, Do-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • After launching, spacecraft is exposed to extreme environments. So spacecraft should be tested after design/manufacture to verify whether components can be operated functionally. Acceleration transferred from launch vehicle to spacecraft produces quasi-static load, sine vibration and random vibration. Random vibration is also induced by acoustic vibrations transferred by surface of spacecraft. And shock vibration is produced when spacecraft is separated from launch vehicle. To verify operation of spacecraft under these launch environments, separation shock test, sine vibration test, acoustic vibration test and random vibration test should be performed. This paper describes these launch environment test requirements.

  • PDF

Performance Analysis of the GPS Antenna for Satellite Launch Vehicles under the Hot -Temperature Environment

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Choi, Hyung-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.273-278
    • /
    • 2006
  • In order to use a GPS antenna for launch vehicles, it should be installed on the skin of the vehicle and be able to normally receive the live GPS signals during the vehicle's full flight mission. The GPS antenna on the surface of the launch vehicle is, however, exposed to higher temperature than inner equipments of the vehicle due to aerodynamic heating generated during the flight. Test specification of the GPS antenna for qualification of hot-temperature is determined to $+95^{\circ}C$ that is higher than inner components by $25^{\circ}C$. Test results in this paper show that the GPS antenna normally operates under the above environment.

  • PDF

Vibration Fixture design for small satellite launch vehicle environment test (인공위성발사체 상단부 진동환경시험을 위한 치구설계)

  • Jeong, Ho-Kyeong;Seo, Sang-Hyun;Park, Soon-Hong;Jang, Young-Soon;Yi, Yeoung-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.258-262
    • /
    • 2007
  • Satellite launch vehicle is exposed to some dynamic environment during its flight. Particularly, the safety of launch vehicle structure is surely verified under vibration environment in low frequency range. Sine sweep test is generally performed to describe this low frequency vibration environment. Dynamic property of vibration fixture is considered to get the correct property of target object. This vibration fixture should really be an extension of the armature in the form of a very rigid structure that can transfer the required force at the required frequency. An optimum fixture would have its lower natural frequency about 50% higher than the highest required forcing frequency in order to avoid fixture resonances during the test. In this study, the vibration mode analysis considering the mass of target object to design the vibration fixture. And the modal test of vibration fixture is performed to conform the design.

  • PDF

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.

DEVELOPMENT OF KITSAT-1 AND 2 MECHANICAL SYSTEM AND RESULTS OF ENVIRONMENT TEST (우리별 1, 2호의 기계구조 개발 및 환경시험 결과)

  • 배정석;이동우;이상현;박성동;최순달
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.94-104
    • /
    • 1996
  • The satellite experiences the launch environment such as vibration, acceleration, shock induced by rocket and the orbit environment such as high vacuum, no gravity, high temperature and cryogenic. Therefore, the satellite should be designed and manufactured to endure such environments. Also, special care must be taken on the assembly of parts and subsystem. Finally, we describe the environment test of microsatellite to ensure the reliable operation during launch period as well as in-orbit operation.

  • PDF

Launch Environment Test and Evaluation of Fuel Feeding Unit for Electric Propulsion System to Small-Satellite Applications (소형위성용 전기추진시스템을 위한 연료공급부의 발사환경 시험평가)

  • Kim, Younho;Kang, Seokhyun;Jung, Yunhwang;Kang, Seongmin;Seon, Jongho;Lee, Sang-Hyun;Cha, Won-Ho;Eun, Hee-Kwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1051-1056
    • /
    • 2014
  • A Fuel Feeding Unit of electric propulsion system has been developed for the small-satellite applications. The fuel feeding unit stores the xenon gas with high pressure and density as a fuel. Xenon can affect to system stability since xenon has the transient condition under the critical point which is in ambient temperature on the launch environment. The functional and structural stability on the launch environment needs verification through the ground tests. The design points and verification tests of the system were discussed and test results were described on this text. The system stability on the launch environment was verified through these verification tests.

Thermal Analysis on a Satellite Box during Launch Stage by Analytical Solution

  • Choi, Joon-Min;Kim, Hui-Kyung;Hyun, Bum-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.17-25
    • /
    • 2003
  • Simple methods are developed to predict temperatures of a satellite box during launch stage. The box is mounted on outer surface of satellite and directly exposed to space thermal environment for the time period from fairing jettison to separation. These simple methods are to solve a 1st order ordinary differential equation (ODE) which is simplified from the governing equation after applying several assumptions. The existence of analytical solution for the 1st order ODE is determined depending on treatment of time-dependent molecular heating term. Even for the case that the analytical solution is not available due to the time dependent term, the 1st order ODE can be solved by relatively simple numerical techniques. The temperature difference between two different approaches (analytical and numerical solutions) is relatively small (Jess than $1^{\circ}C$ along the time line) when they are applied to STSAT-I launch scenario. The present methods can be generally used as tools to quickly check whether a satellite box is safe against space environment during the launch stage for the case that the detailed thermal analysis is not available.