• Title/Summary/Keyword: Layer Performance

Search Result 5,313, Processing Time 0.042 seconds

A Basic Study on Evaluation Method and Performance of Membrane Waterproofing Layer (멤브레인 방수층 성능 및 평가방법에 관한 기초적 연구)

  • Oh, Mi-Hyun;Kwon, Shi-Won;Kang, Hyo-Jin;Jung, Hee-Won;Choi, In-Sung;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.17-21
    • /
    • 2003
  • This study is mainly acceptive for physical material performance than waterproofing layer performance on the external condition after construction. The reason are legalized only for material performance quality standard even though it is existed waterproofing materials for membrane. In actuality, waterproofing layer are greatly occurred in performance a decreased developing essential element that are human footprints as a result physical perimeter environment after construction and on the construction. As the result, this present paper purpose for evaluation and performance of the membrane waterproofing layer on the construction.

  • PDF

A Basic Study on Evaluation Method and Performance of Membrane Waterproofing Layer (멤브레인 방수층 성능 및 평가방법에 관한 기초적 연구)

  • 오미현;권시원;강효진;정희원;최인성;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.17-21
    • /
    • 2003
  • This study is mainly acceptive for physical material performance than waterproofing layer performance on the external condition after construction. The reason are legalized only for material performance duality standard even though it is existed waterproofing materials for membrane. In actuality, waterproofing layer are greatly occurred in performance a decreased developing essential element that are human footprints as a result physical perimeter environment after construction and on the construction. As the result, this present paper purpose for evaluation and performance of the membrane waterproofing layer on the construction.

  • PDF

Experimental Investigation of the Effect of Composition on the Performance and Characteristics of PEM Fuel Cell Catalyst Layers

  • Baik, Jung-Shik;Seong, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.157-160
    • /
    • 2007
  • The catalyst layer of a proton exchange membrane (PEM) fuel cell is a mixture of polymer, carbon, and platinum. The characteristics of the catalyst layer play critical role in determining the performance of the PEM fuel cell. This research investigates the role of catalyst layer composition using a Central Composite Design (CCD) experiment with two factors which are Nafion content and carbon loading while the platinum catalyst surface area is held constant. For each catalyst layer composition, polarization curves are measured to evaluate cell performance at common operating conditions, Electrochemical Impedance Spectroscopy (EIS), and Cyclic Voltammetry (CV) are then applied to investigate the cause of the observed variations in performance. The results show that both Nafion and carbon content significantly affect MEA performance. The ohmic resistance and active catalyst area of the cell do not correlate with catalyst layer composition, and observed variations in the cell resistance and active catalyst area produced changes in performance that were not significant relative to compositions of catalyst layers.

  • PDF

A Methodology for Performance Testing of Ethernet Switch (Layer 3 이더넷 스위치 성능 시험 방법론 연구)

  • 김용선
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.441-444
    • /
    • 2000
  • This paper covers the performance testing for layer 3 Ethernet switch based on various methodologies by which we can measure essential metrics such as throughput, latency, frame loss rate, and back to back frames. In the first place, layer 2 and layer 3 switch evolution is introduced followed by description of IP packet switching in layer 3 switch. And then, the above test metrics and test methodologies are illustrated as well. At last, we conduct the performance testing for layer 3 switch in case of transmitting packets of 64, 128, 256, 512, 1024, 1280, and 1518 byte size and analyze then results.

  • PDF

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.

Air Layer Effect on the Performance Improvement of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Shin, Byeong-Rog;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

Effect of Diffusion Layer for Cell Performance in DMFC (직접메탄올 연료전지에서 전지 성능에 대한 확산층의 영향)

  • Kwon Bu-Kil;Park Kyung-Won;Choi Jong-Ho;Sung Yung-Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.179-184
    • /
    • 2001
  • The diffusion layer within MEA(membrane electrode assembly) has been evaluated important factor for improvement of cell performance in DMFC. The diffusion layer in MEA structure leads to the reduction of catalyst loss in active catalysts layer as well as prevention of water-flooding in cathode. Cell performance is directly affected by interior properties of diffusion layer materials. Acetylene Black and $RuO_2$ with large pore size and low porosity compared to Vulcan XC-72R gave better performance caused by vigorous methanol diffusion and water removal. And $RuO_2$ as diffusion layer materials showed different behavior in anode and cathode compartment, that is, diffusion layers in anode and cathode side make methanol diffusion and water removal facilitate, respectively.

  • PDF

Microstructure and wear performance of WC-6.5%Co cladding layer by electric resistance welding (저항 클래딩법에 의해 형성된 내마모성 WC-6.5Co 클래딩층의 미크로조직 및 내마모성능)

  • Lee, Jin-U;Bae, Myeong-Il;Kim, Sang-Jin;Lee, Yeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.120-122
    • /
    • 2006
  • This study deals with characterizations of microstructure and wear performance of a cladding layer, product on 1.9 mm-thick mild steel plate by the electric resistance welding, of composite metal powder of Coarse WC-6.5%Co and high carbon alloy(SHA). The cladding layer was examined and tested fur microstructural features, chemical composition, hardness, wear performance and wear mechanism. The cladding layer have two different matrix were observed by an optical microscope and EPMA. The one was the coarse WC-6.5Co structure. The other was the melted SHA with surrounding the WC-6.5Co structure. The hardness of WC-6.5Co was 1210HV. The hardness of SHA was 640HV. In comparison by wear rate, the cladding layer showed the remarkable wear performance that was 15 times of SM490 and about 62% of D2.

  • PDF

A numerical investigation of seismic performance of large span single-layer latticed domes with semi-rigid joints

  • Zhang, Huidong;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.57-75
    • /
    • 2013
  • It is still inadequate for investigating the highly nonlinear and complex mechanical behaviors of single-layer latticed domes by only performing a force-based demand-capacity analysis. The energy-based balance method has been largely accepted for assessing the seismic performance of a structure in recent years. The various factors, such as span-to-rise ratio, joint rigidity and damping model, have a remarkable effect on the load-carrying capacity of a single-layer latticed dome. Therefore, it is necessary to determine the maximum load-carrying capacity of a dome under extreme loading conditions. In this paper, a mechanical model for members of the semi-rigidly jointed single-layer latticed domes, which combines fiber section model with semi-rigid connections, is proposed. The static load-carrying capacity and seismic performance on the single-layer latticed domes are evaluated by means of the mechanical model. In these analyses, different geometric parameters, joint rigidities and roof loads are discussed. The buckling behaviors of members and damage distribution of the structure are presented in detail. The sensitivity of dynamic demand parameters of the structures subjected to strong earthquakes to the damping is analyzed. The results are helpful to have a better understanding of the seismic performance of the single-layer latticed domes.

High performance silicone for quality assurance of inter-layer joint in apartment house (공동주택 층간조인트 품질확보를 위한 고성능 실리콘 개발)

  • Seo, Tae-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.201-202
    • /
    • 2022
  • In this study, the high performance silicone was developed to assure the inter-layer joint in apartment house. The tensile strength, the elongation, the bond strength and the fatigue tests were conducted. As a result, it was confirmed that the performance of high -performance silicone was superior to the existing elastic paint. Therefore, it is expected that it will help to secure the quality of inter-layer joints in apartment houses.

  • PDF