• Title/Summary/Keyword: Layered

Search Result 3,964, Processing Time 0.033 seconds

A Study on the Condensation and Thermal Environment according to Window Systems Types Installed for a Extended-Balcony Apartment (확장형 발코니 공동주택의 창호종류에 따른 결로 및 온열환경에 관한 연구)

  • Yoon, Jong-Ho;An, Young-Sub;Kim, Byoung-Soo
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.87-92
    • /
    • 2007
  • As expansion of balconies at apartments has been legalized, the major function of the balconies as a thermal buffer zone is disappearing. This weakens the ability of window to insulate heat and multiplies surface condensation. Thus more and more residents require solutions to increasing surface condensation and aggravation in thermal comfort. This study intends to provide basic data by evaluating performance of triple layered Low-E windows, triple layered clear windows, double layered Low-E windows and double layered clear window used for expanded balconies and marketed within the country in terms of surface condensation and thermal environment through simulation. Results revealed that no surface condensation occurred at double layered Low-E windows and triple layered Low-E windows. Surface condensation took place at double layered clear windows and triple layered clear windows at a relative humidity of 60%. Thermal environment analysis suggested that double layered clear windows showed the most time falling into the range of comfort at $23^{\circ}C$. The figure were $22^{\circ}C$ for triple layered clear windows, $22^{\circ}C$ for double layered Low-E windows and $21^{\circ}C$ for triple layered Low-E windows.

Facile and Clean Synthetic Route to Non-Layered Two-Dimensional ZIF-67 Nanosheets

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • Two-dimensional (2D) metal organic framework (MOF) nanosheets (NSs) have recently gained considerable interest owing to their structural advantages, such as large surface area and exposed active sites. Two different types of 2D MOF NSs have been reported, including inherently layered MOFs and non-layered ones. Although several studies on inherently layered 2D MOFs have been reported, non-layered 2D MOFs have been rarely studied. This may be because the non-layered MOFs have a strong preference to form three-dimensionality intrinsically. Furthermore, the non-layered MOFs are typically synthesized in the presence of the surfactant or modulator, and thus developing facile and clean synthetic routes is highly pursued. In this study, a facile and clean synthetic methodology to grow non-layered 2D cobalt-based zeolitic imidazolate framework (ZIF-67) NSs is suggested, without using any surfactant and modulator at room temperature. This is achieved by directly converting ultrathin α-Co(OH)2 layered hydroxide salt (LHS) NSs into non-layered 2D ZIF-67 NSs. The comprehensive characterizations were conducted to elucidate the conversion mechanism, structural information, thermal stability, and chemical composition of the non-layered 2D ZIF-67. This facile and clean approach could produce a variety of non-layered 2D MOF NS families to extend potential applications of MOF materials.

Cooling and Deformation Analysis of a Layered Road in a FDM Type 3D Printing Through Thermal-structural Coupled Simulation

  • Kim, S.L.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.216-223
    • /
    • 2017
  • The additive manufacturing technology, also called 3D printing, is growing fast. There are several methods for 3D printing. Fused deposition modeling (FDM) type 3D printing is the most popular method because it is simple and inexpensive. Moreover, it can be used for printing various thermoplastic materials. However, it contains the cooling of layered road and causes thermal shrinkage. Thermal shrinkage should be controlled to obtain high-quality products. In this study, temperature distribution and cooling behavior of a layered road with cooling are studied through computer simulation. The thermal shrinkage of the layered road was simulated using the calculated temperature distribution with time. Shape variation of the layered road was predicted as cooling proceeded. Stress between the bed and the layered road was also predicted.This stress was considered as the detaching stress of the layered road from the bed. The simulations were performed for various thermal conductivities and temperatures of the layered road, bed temperature, and chamber temperature of a 3D printer. The simulation results provide detailed information about the layered road for FDM type 3D printing under operational conditions.

Application of Layered System to the Outdoor Clothing - Through Water Vapor Permeability - (Layered System의 아웃도어 의류에의 적용 - 수분전달 특성을 중심으로 -)

  • Oh, Ae-Gyeong
    • Fashion & Textile Research Journal
    • /
    • v.8 no.6
    • /
    • pp.709-712
    • /
    • 2006
  • The aim of this study is to find out comfortable combinations of layered system for outdoor activities through water vapor permeability. Layering fabrics is an effective way of controlling water transport properties in fabric systems for outdoor activities and analysis of these systems may be useful for designing comfortable clothing. Seven fabrics were chosen for the experiments: two fabrics for base layer, two for the middle layer and three for the shell layer. A total of 12 different layered systems, which are all possible combinations were established using selected fabrics. The water vapor permeability was measured using JIS L1099 under isothermal and non-isothermal conditions. It was found that layered system was working together as a whole having influence on each layer, though every layer offers varying degree of water vapor permeability. Furthermore, it was also found that an optimal combination of the three layered system does exist although the combination may differ according to the ways. The shell layer is the greatest effect of water vapor permeability under isothermal and non-isothermal conditions within layered system.

Behavior of Water Vapor Permeability on Layered System

  • Oh, Ae-Gyeong
    • Fashion & Textile Research Journal
    • /
    • v.11 no.2
    • /
    • pp.359-362
    • /
    • 2009
  • This study investigates the behavior of water vapor permeability of a layered system to find out a comfortable combination of a layered system for outdoor activities and examines the water vapor permeability of various types of outdoor clothing fabrics. The layered system includes the base layer such as sportswool and polyester/cotton fabrics, the middle layer such as single and double sided fleece fabrics, and the shell layer such as polyurethane-coated, PTFE-laminated and microfiber fabrics in this experiment. Results show that the layered system was applied, it was working together as a whole having some influence on each other layer, though every layer offered varying degree of water vapor permeability. Water vapor permeability of layered system exactly followed the same trend as the shell layer, which is all vapor permeable water repellent fabrics as a single layer. The rate of water vapor transfer through a layered system is mainly related to the type of vapor permeable water repellent fabrics used for the shell layer.

Hydroforming Characteristics of Double Layered Tube (이중튜브의 액압 성형특성 연구)

  • Kwon, S.O.;Yi, H.K.;Chung, G.S.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.567-574
    • /
    • 2007
  • Double layered tube is assembled with an inner tube and an outer tube, similar in material or not, contacting closely and deforming simultaneously when subjected to external force. For the manufacturing of double layered tube, the hydroforming assembly technology has several advantages. Therefore in this study, hydroforming characteristics of double layered tube was investigated. The free bulge test was performed to produce formability diagrams of double layered tubes at various forming pressure and feeding amounts. The hexagonal shape hydroforming test was also performed to estimate the dimensional accuracies of double layered tube through the corner filling ratio and the gap between inner and outer tube. Besides experimental analyses, the analytical model that can predict internal pressure for the hydroforming of double-layered tube was proposed and experimentally validated.

Forced Vibration Analysis of Multi-Layered Damped Sandwich Beam (샌드위치형 다층 감쇠보의 강제진동 응답 해석)

  • Won, Sung-Gyu;Jung, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.608-611
    • /
    • 2005
  • In this paper the general equation of motion of damped sandwich beam including arbitrary viscoelastic material layer was derived based on the equation presented by Mead and Markus. The equation of motion of n-layered sandwich beam was represented by (n+3)th order ordinary differential equation. It was verified that the general equation of motion derived in this paper could represent the equations of motions for single-layered, three-layered, five-layered and multi-layered damped beam. Finite element method for the arbitrary-layered damped beam was formulated and programmed using higher order shape functions. Several numerical examples were implemented to show the effects of damped material.

  • PDF

Preparation and Surface Properties of Polysulfone/Organophilic Layered Silicate Nanocomposites (폴리설폰/친유기화 층상실리케이트 나노복합체의 제조 및 표면 특성)

  • Sul, Kyung-Il;Ma, Seung Lac;Kim, Yong Seok;Lee, Jae Heung;Won, Jong Chan
    • Journal of Adhesion and Interface
    • /
    • v.4 no.4
    • /
    • pp.15-21
    • /
    • 2003
  • Polysulfone/organophilic layered silicate nanocomposites were prepared in the range of 0.25 to 9 wt% of organophilic-layered silicate by solution blend. Nano-hybridized films were cast from the blend solution. Exfoliation and intercalation of the polysulfone/organophiliclayered silicate nanocomposite films were confirmed by an X-ray diffractometer and a transmission electron microscope. Surface morphologies of polysulfone/organophilic layered silicate nanocomposite films were determined by a scanning electronic microscope and an atomic force microscope. When the organophilic layered silicate was added more than 1.5 wt%, the surface roughness (RMS) was rapidly increased because clusters of intercalated organophilic layered silicate particles existed on the polysulfone/organophilic-layered silicate film surface. Surface tension revealed an upward tendency over the contents of 1.5 wt% organophilic layered silicate in polysulfone/organophilic layered silicate nanocomposite. The change of surface morphology in polysulfone/organophilic layered silicate nanocomposite were affected by nano scale dispersed and intercalated organophilic layered silicate particles.

  • PDF

Study on the electric properties of layered $BaTiO_3$ films prepared new stacking method (새로운 방법으로 제조된 적층구조 $BaTiO_3$ 박막의 전기적 특성에 관한 연구)

  • Song, Man-Ho;Lee, Yun-Hi;Hahn, Taek-Sang;Oh, Myung-Hwan;Yoon, Ki-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1129-1132
    • /
    • 1995
  • In the preparation of the layered $BaTiO_3$ thin films with high performance, the new stacking method using the continuous cooling of the substrate was introduced. Amorphous/polycrystalline $BaTiO_3$ layered structure was confirmed by SEM and index of refraction. The layered $BaTiO_3$ thin films formed by the new stacking method showed such a high dielectric constant that the layered structure could not be explained by a stacking structure of the two defined layers but could only be explained by multi-layered structure, i.e. amorphous/micro crystalline/polycrystalline structure. The layered $BaTiO_3$ thin film with a thickness of 240 nm showed higher capacitance per unit area and breakdown strength than the double layered $BaTiO_3$ thin film prepared by the conventional stacking method. And well defined ferroelectric hysteresis leer was observed in the layered $BaTiO_3$ thin film with a thickness of 200 nm.

  • PDF