• Title/Summary/Keyword: Lie derivative

Search Result 18, Processing Time 0.025 seconds

ON THE LIE DERIVATIVE OF REAL HYPERSURFACES IN ℂP2 AND ℂH2 WITH RESPECT TO THE GENERALIZED TANAKA-WEBSTER CONNECTION

  • PANAGIOTIDOU, KONSTANTINA;PEREZ, JUAN DE DIOS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1621-1630
    • /
    • 2015
  • In this paper the notion of Lie derivative of a tensor field T of type (1,1) of real hypersurfaces in complex space forms with respect to the generalized Tanaka-Webster connection is introduced and is called generalized Tanaka-Webster Lie derivative. Furthermore, three dimensional real hypersurfaces in non-flat complex space forms whose generalized Tanaka-Webster Lie derivative of 1) shape operator, 2) structure Jacobi operator coincides with the covariant derivative of them with respect to any vector field X orthogonal to ${\xi}$ are studied.

Real Hypersurfaces with k-th Generalized Tanaka-Webster Connection in Complex Grassmannians of Rank Two

  • Jeong, Imsoon;Lee, Hyunjin
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.525-535
    • /
    • 2017
  • In this paper, we consider two kinds of derivatives for the shape operator of a real hypersurface in a $K{\ddot{a}}hler$ manifold which are named the Lie derivative and the covariant derivative with respect to the k-th generalized Tanaka-Webster connection ${\hat{\nabla}}^{(k)}$. The purpose of this paper is to study Hopf hypersurfaces in complex Grassmannians of rank two, whose Lie derivative of the shape operator coincides with the covariant derivative of it with respect to ${\hat{\nabla}}^{(k)}$ either in direction of any vector field or in direction of Reeb vector field.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING 𝔏ξ∇ = 0 IN A NONFLAT COMPLEX SPACE FORM

  • AHN, SEONG-SOO;LEE, SEONG-BAEK;LEE, AN-AYE
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.133-143
    • /
    • 2001
  • In this paper, we characterize some semi-invariant submanifolds of codimension 3 with almost contact metric structure (${\phi}$, ${\xi}$, g) satisfying 𝔏ξ∇ = 0 in a nonflat complex space form, where ${\nabla}$ denotes the Riemannian connection induced on the submanifold, and 𝔏ξ is the operator of the Lie derivative with respect to the structure vector field ${\xi}$.

  • PDF

LORENTZIAN ALMOST r-PARA-CONTACT STRUCTURE IN TANGENT BUNDLE

  • Islam Khan, Mohammad Nazrul;Jun, Jae-Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • Almost contact and almost complex structures in the tangent bundle have been studied by K. Yano and S. Ishihara[5] and others. In the present paper, we have studied Lorentzian almost r-para-contact structure in the tangent bundle. Some results related to Lie-derivative have been studied.

REAL HYPERSURFACES OF THE JACOBI OPERATOR WITH RESPECT TO THE STRUCTURE VECTOR FIELD IN A COMPLEX SPACE FORM

  • AHN, SEONG-SOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.279-294
    • /
    • 2005
  • We study a real hypersurface M satisfying $L_{\xi}S=0\;and\;R_{\xi}S=SR_{\xi}$ in a complex hyperbolic space $H_n\mathbb{C}$, where S is the Ricci tensor of type (1,1) on M, $L_{\xi}\;and\;R_{\xi}$ denotes the operator of the Lie derivative and the Jacobi operator with respect to the structure vector field e respectively.

Characterizations of some real hypersurfaces in a complex space form in terms of lie derivative

  • Ki, U-Hang;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.161-170
    • /
    • 1995
  • A complex $n(\geq 2)$-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. Takagi [12] and Berndt [2] classified all homogeneous real hypersufaces of $P_nC$ and $H_nC$.

  • PDF

HOPF HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH LIE PARALLEL NORMAL JACOBI OPERATOR

  • Jeong, Im-Soon;Lee, Hyun-Jin;Suh, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.427-444
    • /
    • 2011
  • In this paper we give some non-existence theorems for Hopf hypersurfaces in the complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ with Lie parallel normal Jacobi operator $\bar{R}_N$ and totally geodesic D and $D^{\bot}$ components of the Reeb flow.

ON SENDOV'S CONJECTURE ABOUT CRITICAL POINTS OF A POLYNOMIAL

  • Nazir, Ishfaq;Mir, Mohammad Ibrahim;Wani, Irfan Ahmad
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.825-831
    • /
    • 2021
  • The derivative of a polynomial p(z) of degree n, with respect to point α is defined by Dαp(z) = np(z) + (α - z)p'(z). Let p(z) be a polynomial having all its zeros in the unit disk |z| ≤ 1. The Sendov conjecture asserts that if all the zeros of a polynomial p(z) lie in the closed unit disk, then there must be a zero of p'(z) within unit distance of each zero. In this paper, we obtain certain results concerning the location of the zeros of Dαp(z) with respect to a specific zero of p(z) and a stronger result than Sendov conjecture is obtained. Further, a result is obtained for zeros of higher derivatives of polynomials having multiple roots.

BETCHOV-DA RIOS EQUATION BY NULL CARTAN, PSEUDO NULL AND PARTIALLY NULL CURVE IN MINKOWSKI SPACETIME

  • Melek Erdogdu;Yanlin Li;Ayse Yavuz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1265-1280
    • /
    • 2023
  • The aim of this paper is to investigate Betchov-Da Rios equation by using null Cartan, pseudo null and partially null curve in Minkowski spacetime. Time derivative formulas of frame of s parameter null Cartan, pseudo null and partially null curve are examined, respectively. By using the obtained derivative formulas, new results are given about the solution of Betchov-Da Rios equation. The differential geometric properties of these solutions are obtained with respect to Lorentzian causal character of s parameter curve. For a solution of Betchov-Da Rios equation, it is seen that null Cartan s parameter curves are space curves in three-dimensional Minkowski space. Then all points of the soliton surface are flat points of the surface for null Cartan and partially null curve. Thus, it is seen from the results obtained that there is no surface corresponding to the solution of Betchov-Da Rios equation by using the pseudo null s parameter curve.

On real hypersurfaces of a complex hyperbolic space

  • Kang, Eun-Hee;Ki, U-Hang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.173-184
    • /
    • 1997
  • An n-dimensional complex space form $M_n(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature c. As is well known, complete and simply connected complex space forms are a complex projective space $P_n C$, a complex Euclidean space $C_n$ or a complex hyperbolic space $H_n C$ according as c > 0, c = 0 or c < 0.

  • PDF