• Title/Summary/Keyword: Life test

Search Result 9,754, Processing Time 0.039 seconds

A Study on the Accelerated Life Evaluation of Drive Shaft for Independent Suspension type AWD Vehicle (독립현가형 AWD 차량의 구동축 가속 수명 평가에 관한 연구)

  • Kim, Do-Sik
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.343-356
    • /
    • 2011
  • This paper proposes an accelerated life evaluation of drive shaft. The life test of drive shaft for independent suspension type AWD vehicle should be performed by use of the least test sample because many number of samples can't be used for the test because of its mass capacity and high price. We calculated the no failure test time by application of no failure test concept, and the already performed test data for drive shaft are applied for some kinds of reliability coefficients which are needed for calculation of life test time. And, for analysis of real driving condition of vehicle, the load spectrum is prepared using the needed road condition and vehicle data. The inverse power model is used for accelerated life test. The equivalent torque of load spectrum is achieved by use of Miner's Rule, and then the final accelerating condition is determined by decision of the accelerated test torque. This paper shows that the accelerated life test results corresponds with the target life and the proposed life test method can be very well applied to no failure life test for mass capacity machinery components.

DEVELOPMENT OF AN ACCELERATED LIFE TEST PROCEDURE FOR COOLING FAN MOTORS

  • Shin, W.G.;Lee, S.H.;Song, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.757-762
    • /
    • 2006
  • Reliability of automotive parts has been one of the most interesting fields in the automotive industry. Especially, a small DC motor was issued because of the increasing adoption for passengers' safety and convenience. For several years, small DC motors have been studied and some problems of a life test method were found out. The field condition was not considered enough in the old life test method. It also needed a lot of test time. For precise life estimation and accelerated life test, new life test procedure was developed based on measured field condition. The vibration condition on vehicle and latent force on fan motor shaft were measured and correlated with each other. We converted the acceleration data into the load data and calculated the equivalent load from integrated value. We found the relationship which can be used for accelerated life test without changing the severity by using different loading factors.

Accelerated Life Test Selection Study for Life Evaluation of Engine Type Drive Axle for Forklift (지게차용 엔진식 드라이브 액슬 수명평가를 위한 가속수명시험 선정 연구)

  • Jun-Young Kim;Yeong Jun Yu;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, the selection of a reliable accelerated life test code for a 2-ton forklift was accomplished by choosing the driving resistance coefficient failure-free test time based on a 10,000-hour B10 life. The overall life and average equivalent load of the vehicle were then calculated based on actual driving test conditions using the selected driving resistance coefficient. The gear train's accelerated life test code was selected by adjusting the equivalent load to a torque and rotation speed that did not exceed 125%(about 75HP) of the vehicle rated power. The safety of the test standards was validated by conducting an actual accelerated life test utilizing the proposed test method in this study and comparing the test result with the corresponding theoretical value. It is anticipated that the reliability of the accelerated life test in this paper will be enhanced, by incorporating actual driving performance data collected directly from the forklift and adjusting the conditions used in developing the accelerated life test code.

Development of accelerated life test method for the wind turbine Gearbox using cumulative damage theory (누적손상이론을 이용한 풍력증속기의 가속수명시험법 개발)

  • Son, Ki-Su;Kwak, Hee-Sung;Kang, Change-Hoon;Cho, Jun-Haeng
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.693-697
    • /
    • 2005
  • This study was performed to develop accelerated life test method of the wind-turbine gearbox using accumulated damage theory that used to model the fatigue of parts that receive variable load. The accumulated damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of the gearbox was described. Life distribution of the wind-turbine gearbox was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 140,600 hours and 99% reliability for one test sample According to the accumulated damage theory, because test time can shorten in case increase test load, test time could be reduced by 1.2 years when we put the load 1.2 times of rated load than 0.93 times of rated load that is equivalent load calculated by load spectrum of the wind turbine. This time, acceleration coefficient was 21.3. This accelerated test method was used to develop accelerated test method of gear reducer, gear and bearing as well as the industrial gearbox and it is considered to be applied comprehensively to mechanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

Development of Accelerated Life Test Method for Machanical Parts Using Cumulative Damage Theory (누적손상이론을 이용한 기계류부품의 가속수명시험법 개발)

  • Kim, Dae-Cheol;Lee, Geun-Ho;Kim, Hyeong-Ui
    • 연구논문집
    • /
    • s.32
    • /
    • pp.35-43
    • /
    • 2002
  • This study was performed to develop accelerated life test method of machanical parts using cumulative damage theory that used to model the fatigue of parts that receive variable load. The cumulative damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of agricultural tractor transmission was described. Life distribution of agricultural tractor transmission was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 3,000 hours and 90% reliability for one test sample. According to the cumulative damage theory, because test time can shorten in case increase test load, test time could be reduced by 482 hours when we put the load 1.1 times of rated load than 0.73 times of rated load that is equivalent load calculated by load spectrum of the agricultural tractor. This time, acceleration coefficient was 11.7. This accelerated test method was used to develop accelerated test method of gear reducer, hydraulic hose and bearing as well as agricultural tractor transmission and it is considered to be applied comprehensively to machanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

Evaluation Criteria of Reliability on Transmission Control Unit for Passenger Car

  • Choi, M.;Ryu, S.;Lim, J.H.;Jeong, H.S.
    • International Journal of Reliability and Applications
    • /
    • v.11 no.1
    • /
    • pp.55-67
    • /
    • 2010
  • There has been a recent upsurge in demand for the improvement of car reliability in the Northern American which is the primary market of South Korea automobile industry. It has been required that the warranty for transmission control unit for passenger cars directly related to passenger safety or security should be extended for 10 years and 160,000 km. In this paper, the test method for reliability and evaluation criteria is presented to evaluate the reliability on the automatic transmission controller. Reliability certification test can be roughly divided into two types: a quality test and life assessment test and a quality test can be subdivided into a basic performance test and environmental resistance test. There are 3 types of tests on the performance test for automatic transmission controller and environmental resistance test is composed of 14 items. Life test is performed with only the product passed this quality test. In this study, operation limit test at the high-temperatures, accelerated life test under specific temperature and accelerated life test for 2 or 3 stress levels are shown as a way for life test.

  • PDF

Development of accelerated life test method for mechanical components using Weibull-IPL(Inverse Power Law) model (와이블-역승법을 이용한 기계류부품의 가속시험 방법 개발)

  • Lee, Geun-Ho;Kim, Hyoung-Eui;Kang, Bo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.445-450
    • /
    • 2003
  • This study was performed 10 develop the accelerated life test method using Weibull-IPL(Inverse Power Law) model for mechanical components. Weibull-IPL model is concerned with determining the assurance life with confidence level and the accelerated life test time From the relation of weibull distribution factors and confidence limit, the testing times on the no number of failure acceptance criteria arc determined. The mechanical components generally represent wear and fatigue characteristics as a failure mode. IPL based on the cumulative damage theory is applied effectively the mechanical components to reduce the testing time and to achieve the accelerating test conditions. As the actual application example, accelerated life test method of agricultural tractor transmission was described. Life distribution of agricultural tractor transmission was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 3,000 hours and 90% confidence level for one test sample. According to IPL, because test time call be shorten in case increase test load test time could be reduced by 482 hours when we put the load 1.1 times of rated load than 0.73 times of rated load that is equivalent load calculated by load spectrum of the agricultural tractor. This time, acceleration coefficient was 11.7.

  • PDF

Accelerated Life Test Using Structural Analysis of a Helicopter Accumulator (헬기용 축압기의 구조해석에 의한 가속 수명시험)

  • Lee, Geon-Hui;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.67-72
    • /
    • 2020
  • Life tests are essential in reducing the catastrophic damage caused by the accidents of large machinery such as aircraft and ships. However, life tests are challenging to implement due to the high costs and time required to test the life of large machinery parts. Therefore, it is advantageous and convenient to apply accelerated life test techniques for key components to reduce costs and time. In fact, extensive research has already been conducted on these techniques. However, recently, there have been cases in which an experimental value was applied to the shape parameter of the Weibull distribution used in the reliability test, but the test time was not significantly reduced. Therefore, in this paper, the shape parameters are estimated from the probability density function of the Weibull distribution for the analysis of an accelerated life test for bladder accumulators, which are core components of military helicopters. The test time was derived based on the number of samples and confidence level by substituting it into the test time equation. Next, the accelerated life test time was calculated using the steady-state test time with an acceleration factor obtained from the Arrhenius model. The steady-state life test required approximately 15,000 H, whereas the accelerated life test time for one sample at 100 ℃ was 34% shorter than that of the steady-state life test.

The Statistical Evaluation for the Wear Life of Brake Pad Linings in Vehicle Durability Test and Customer Usage Environment (차량내구시험과 시장 사용환경에서의 브레이크 패드 마찰재 마모수명에 대한 통계적 평가)

  • 서경원;정관영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.213-220
    • /
    • 1999
  • The life data analysis of the system and component are useful to describe the result of reliability test in product life to satisfy customer's growing need and to change test specifications or design criteria by life data analysis. And vehicle durability tesr occurred market environment. In this study, a statistical analysis for the wear life of brake pad linings helped perform correlation procedure between vehicle durability test and market. B-life values of the brake pad wear life data from both vehicle durability test and marker usage were compared to determine acceleration of the test by the Weibull, normal and log-normal distribution. The acceleration coefficient of the vehicle durability test can access to evaluate design criteria of product and test specification.

  • PDF

No-Failure Accelerated Life Test of Flap Actuating System using Weibull Distribution (와이블 분포를 이용한 플랩구동장치의 무고장 가속수명시험)

  • Cho, Hyunjun;Lee, Inho;Kim, Sangbeom;Park, Sangjoon;Yang, Myungseok
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2016
  • In this paper, we present some results on No-failure accelerated life test of aerial vehicle for reliability demonstration. The design of general accelerated life test consists of the three phases: 1) Estimating normal life test time of a single product from Weibull distribution model; 2) Determining the acceleration factor (AF) by utilizing the relation between the life of mechanical components and the applied torque; 3) Calculating the accelerated life test time, which comes from dividing the estimated normal life test time into AF. Then, we applied the calculated life test time to the real reliability test of the flap actuating system, while considering the requirement specification for mechanical components and operating environment of the actuation system. Real experimental processes and results are presented to validate the theory.