• Title/Summary/Keyword: Light Armed Helicopter

Search Result 6, Processing Time 0.019 seconds

Designing a Common Weapon Interface Module While Taking into Account the Fire Control System Architecture of a Light Armed Helicopter (소형무장헬기 사격통제시스템의 구조를 고려한 공통 무장 인터페이스 모듈 설계)

  • Lee, Dongho;Park, Hanjoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1088-1093
    • /
    • 2014
  • The structure of the fire control system(FCS) of a light armed helicopter and effective logistics support was taken into account in the proposed common weapon interface module(CWIM) for a distributed FCS. The pros and cons of a distributed FCS and a centralized FCS were analyzed, then a CWIM which can be applied to the weapon interface module of a distributed FCS was designed and fabricated. Integration tests between the proposed CWIM and a weapon simulator were conducted to ascertain whether or not the proposed CWIM could be applicable to a distributed FCS. We expect that the CWIM design approach method secured through this study will be helpful in mitigating cable work of the FCS which will be applied to a Light Armed Helicopter and controlling various weapons.

Mission Task & Workload Analysis of Armed Helicopter (무장헬기 임무절차 수립 및 임무하중 분석 연구)

  • Park, Hyojin;Lee, Jinwoo;Lee, Minwoo;Park, Sang C.;Kwon, Yongjin;Lee, Jonghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.25-33
    • /
    • 2012
  • Armed helicopter is an integral part of armed forces, which conducts vital missions, such as anti-armor attack, close air support, escorting air assault operations, and reconnaissance. A typical cockpit arrangement of armed helicopters has been a tandem configuration. This is to reduce the frontal area, which in turn increases the forward speed as well as reduces the chance of being hit by enemy fires. However, many armed helicopters in the world are now being developed as a side-by-side configuration. Such configuration is quite different from the conventional cockpit arrangement in light of the crew communications and situational awareness. Therefore, the main objective of this study is to find the optimized combination of mission tasks among pilots in a side-by-side configuration cockpit by measuring the workload using the NASA Task Load Index method. The experimental results indicate that the workload of crew members differ as disparate tasks are being performed.

Comparisons of Rotor Performance and Noise between Candidate Light Civil Helicopters (민수헬기 대상기종 로터 공력성능 및 소음 비교)

  • Chung, Kihoon;Kang, Hee Jung;Kim, Do-Hyung;Yun, Chul Yong;Kim, Seungho;Park, Kuhwan;Lee, Sang-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.726-733
    • /
    • 2013
  • The rotor blade of helicopter is the core component determining helicopter performance and requiring low noise and low vibration because the blade becomes the major source of noise during flight. The performance analysis of candidates rotor blades is very critical because LCH(Light Civil Helicopter) will be developed parallel with LAH(Light Armed Helicopter) as an international upgrade program based on the existing platform of foreign civil helicopter. This research was aimed to recognize the performance of the candidates rotor blades compared with the newly developed foreign rotor blades and to investigate the feasibility about developing korea unique shape rotor blades by analysis the rotor performance and noise. The result of this research can be used for the target performance index during negotiation with foreign helicopter company and developing korea unique shape rotor blades.

Comparative Study of Engine Type Certification Criteria (항공기 엔진 민수 인증 기준의 비교 분석 연구)

  • Kim, Jae-Hwan;Jung, Yong Wun;Moon, Gyeong Chan;Park, Sooyoul;Kim, Myeonghyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.201-204
    • /
    • 2017
  • An comparative analysis between two engine type certification specifications which are FAR Part 33 and EASA CS-E has been performed to provide fundamental information for validity assessment of civil certified engine when it is installed to a military rotorcraft. The analysis result has been used to build a traceability information between CS-E and MIL-HDBK-516C by which the substantiation data for engine type certification can be used as parts of aircraft propulsion system airworthiness substantiation.

  • PDF

The Study on Optimal Placement and Systematic Performance Measurement Method for Communication/Navigation Antenna of Rotary Wing (회전익 항공기의 통신·항법 안테나 최적 위치설계를 통한 체계성능 측정방법 연구)

  • Sangwan No;Sangyoon Jin;Minsoo Kim;Howon Kang;Seungbeom Ahn
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.110-117
    • /
    • 2023
  • In this paper, the optimal placement of the rotary wing's communication and navigation antennas was evaluated by measuring their performance through ground simulations and flight tests. To select the mounting position of the communication and navigation antenna on the helicopter, after considering the shape and characteristics of the airframe, the radiation patterns, coupling analysis, equipment operation profiles, and antenna type analysis were performed for the aircraft-mounted antenna. Based on the analysis results, a procedure for sequentially performing voltage standing wave ratio (VSWR) measurement and antenna pattern test was established through ground and flight tests of the antenna. The systematic performance measurement method and procedure proposed in this paper were verified through ground and flight tests of the Light Armed Helicopter (LAH) system.

Stabilization Performance Test Technique for LAH Turret Driving System (소형무장헬기 회전형 포탑시스템의 안정화추적 성능 시험기법)

  • Nam, Byounguk;Lee, Hojung;Jo, Sihun;Cho, Sunghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.786-792
    • /
    • 2014
  • In this paper, we propose a novel method which can be applied to test and verify the stabilization-tracking performance of Gun/Turret Driving System(GTDS) for Light Armed Helicopter(LAH). In real system, GTDS is connected to TADS/SMC and drived to aim at the target with 20mm gun. But each equipment is separately developed during exploratory development stage, so GTDS cannot be tested under real system state. We suggest new configuration of test system for evaluating the stabilization-tacking performance, in which TADS and SMC are replaced by vision acquisition unit and processing unit, respectively.