• 제목/요약/키워드: Light sensitive food and beverage

검색결과 2건 처리시간 0.02초

Effects of Package Materials on Quality Change of Pine Bud Beverage Under Ultraviolet Light

  • An, Duek-Jun
    • Preventive Nutrition and Food Science
    • /
    • 제14권4호
    • /
    • pp.349-353
    • /
    • 2009
  • The effects of packaging materials on preserving the functional component of pine bud beverage stored under UV (ultraviolet) light exposure conditions were studied. The order of UV light blocking properties of the selected packages was: opaque can> opaque PET (polyethylene terepthalate) with green lamination=transparent PET with 10% PEN (polyethylene naphthalate) blending> transparent PET, and did not depend on film thickness in specified range. At 20${^{\circ}C}$, the order of preserving degree of original color and endobornyl acetate, which is quality index of pine bud beverage, was the same as above. Exposure to UV light can cause of deterioration of functional food components, but green color lamination and blending of PEN materials with transparent PET help to preserve the UV sensitive pine bud beverage components. However, the treated PET bottles have poorer preservation capabilities than the opaque cans. Transparent PET with PEN blending, in particular, will be very useful packaging material for colorful functional beverage preservation by helping to protect the ingredients while attracting consumer attention.

A Short Review of Light Barrier Materials for Food and Beverage Packaging

  • Kwon, Seongyoung;Orsuwan, Aungkana;Bumbudsanpharoke, Nattinee;Yoon, ChanSuk;Choi, Jungwook;Ko, Seonghyuk
    • 한국포장학회지
    • /
    • 제24권3호
    • /
    • pp.141-148
    • /
    • 2018
  • Photo-oxidation is one of the main causes of food deterioration of great variety of foods, such as dairy products, nuts, meat products, and wine. It causes a loss of both nutritional value and sensorial quality of products and may even leads to the formation of toxic compounds. Active packaging for food and beverages has been investigated and developed with embedding light absorbers or blocking materials into the plastics. In recent years, several novel light barrier materials have been proposed as an alternative option for different applications. This article reviews the up-to-date technology in light absorber and blocking material with special emphasis on chemical compound and mechanism. Inorganic, organic, hybrid organic-inorganic, and natural light absorbers were scoped. The challenges and future perspectives of light barrier materials are also discussed.