• Title/Summary/Keyword: Light-extraction efficiency

Search Result 111, Processing Time 0.035 seconds

Direct printing process based on nanoimprint lithography to enhance the light extraction efficiency of AlGaInP based red LEDs

  • Cho, Joong-Yeon;Kim, Jin-Seung;Kim, Gyu-Tae;Lee, Heon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.171-171
    • /
    • 2012
  • In this study, we fabricated the high-brightness AlGaInP-based red light emitting diodes (LED)s using by direct printing technique and inductive coupled plasma (ICP) reactive ion etching (RIE). In general, surface roughening was fabricated by wet etching process to improve the light extraction efficiency of AlGaInP-based red LED. However, a structure of the surface roughening, which was fabricated by wet etching, was tiled cone-shape after wet etching process due to crystal structure of AlGaInP materials, which was used as top-layer of red LED. This tilted cone-shape of surface roughening can improve the light extraction of LED, but it caused a loss of the light extraction efficiency of LED. So, in this study, we fabricated perfectly cone shaped pattern using direct printing and dry etching process to maximize the light extraction efficiency of LED. Both submicron pattern and micron pattern was formed on the surface of red LED to compare the enhancement effect of light extraction efficiency of LEDs according to the diameter of sapphire patterns.After patterning process using direct printing and ICP-RIE proceeded on the red LED, light output was enhanced up to 10 % than that of red LED with wet etched structure. This enhancement of light extraction of red LED was maintained after packaging process. And as a result of analyze of current-voltage characteristic, there is no electrical degradation of LED.

  • PDF

A Study on Improvement of the Light Emitting Efficiency on Flip Chip LED with Patterned Sapphire Substrate by the Optical Simulation (광학 시뮬레이션을 이용한 Patterned Sapphire Substrate에 따른 Flip Chip LED의 광 추출 효율 변화에 대한 연구)

  • Park, Hyun Jung;Lee, Dong Kyu;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.676-681
    • /
    • 2015
  • Recently many studies being carried out to increase the light efficiency of LED. The external quantum efficiency of LED, generally the light efficiency, is determined by the internal quantum efficiency and the light extraction efficiency. The internal quantum efficiency of LED was already reached to more than 90%, but the light extraction efficiency is still insufficient compared with the internal quantum efficiency because the total internal reflection is generated in the interface between the LED chip and air. Thus, we studied about flip chip LED with PSS and performed the optical simulation which find more optimized PSS for flip chip LED to increase the light extraction efficiency. Decreasing of the total internal reflection and effect of diffused reflection according to PSS improved the light extraction efficiency. To get more higher the efficiency, we simulated flip chip with PSS that the parameters are arrangement, edge spacing, radius, height and shape of PSS.

Improving the Light Extraction Efficiency of GRIN Coatings Pillar Light Emitting Diodes

  • Moe, War War;Aye, Mg;Hla, Tin Tin
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.293-300
    • /
    • 2022
  • This study investigated a graded-refractive-index (GRIN) coating pattern capable of improving the light extraction efficiency of GaN light-emitting diodes (LEDs). The planar LEDs had total internal reflection thanks to the large difference in refractive index between the LED semiconductor and the surrounding medium (air). The main goal of this paper was to reduce the trapped light inside the LED by controlling the refractive index using various compositions of (TiO2)x(SiO2)1-x in GRIN LEDs consisting of five dielectric layers. Several types of multilayer LEDs were simulated and it was determined the transmittance value of the LEDs with many layers was greater than the LEDs with less layers. Then, the specific ranges of incident angles of the individual layers which depend on the refractive index were evaluated. According to theoretical calculations, the light extraction efficiency (LEE) of the five-layer GRIN is 25.29 %, 28.54 % and 30.22 %, respectively. Consequently, the five-layer GRIN LEDs patterned enhancement outcome LEE over the reference planar LEDs. The results suggest the increased light extraction efficiency is related to the loss of Fresnel transmission and the release of the light mode trapped inside the LED chip by the graded-refractive-index.

Improvement of Light Extraction Efficiency by Side Surface Texturing in Nitride-based Light-Emitting Diodes (질화계 발광다이오드의 측면 형상화를 이용한 광 추출 효율 향상)

  • Jang, Dong-Hyeon;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.95-96
    • /
    • 2008
  • We theoretically investigated the influence of side surface texturing on the light extraction efficiency in nitride-based light-emitting diodes (LEDs). The light extraction efficiency was expected as 1.2 times larger in a LED with textured surfaces compared to without ones.

  • PDF

Improvement of light extraction efficiency of display devices by using sub-wavelength scale structure

  • Kwon, Oh-Yung;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1412-1414
    • /
    • 2009
  • It is suggested that the light extraction efficiency of the display device can be improved by adoption of periodic array of sub-wavelength scale structures. The relief of the total reflection has been investigated using the rigorous coupled wave analysis (RCWA). Various shape of the sub-wavelength scale structure allowed to have non vanishing transmittance for the light rays with the incident angle bigger than the critical angle.

  • PDF

유기 발광 다이오드의 광 추출 효율 개선을 위한 다양한 광학기능구조의 적용

  • Kim, Yang-Du;Kim, Gwan;Heo, Dae-Hong;Lee, Heon
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.64-79
    • /
    • 2018
  • Recent years, OLEDs have been progressed intensively and been widely applied to Display and Lighting industry,Almost 100% internal quantum efficiency was achieved by developing new materials and structure optimization. However, external quantum efficiency was still low due to total internal reflection of light inside OLED devices and absorption of light at the surface of metal electrode. In order to improve external quantum efficiency of OLED devices, various kinds of optical functional structures were introduced to inside and outside of OLED devices to increase light extraction efficiency. In this paper, various efforts to apply optical functional structures in OLED devices were reviewed and way to improve light extraction efficency of OLED devices were discussed.

Enhancement of Light Extraction from Transparent OLED Lighting Panels (투명 OLED 면광원 광 추출 향상 기술)

  • Park, June Buem;Shin, Dong-Kyun;Han, Seun Gjo;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.41-45
    • /
    • 2017
  • We have investigated the light extraction efficiency of large-area OLED lighting panels with a microlens array (MLA) or external scattering layer (ESL) by ray tracing simulation. The application of MLA and ESL to transparent OLEDs (TOLEDs) with an auxiliary metal electrode is also studied. It is found that MLA shows higher light extraction efficiency, compared with ESL. However, we have demonstrated that ESL is more suitable for TOLEDs having dual-sided equal light emission. Namely, equal light emission from the front and rear surfaces of TOLED can be achieved by increasing the scattering particle density of ESL. To compensate for a loss in light emission induced by auxiliary metal electrode, we come out with an OLED structure partially covered with MLA at the outer surface of glass substrate, which is aligned with metal electrode. With this scheme, it is observed that the light extraction efficiency can be boosted more than 20% from opaque OLED and 50% from transparent OLED.

  • PDF

Chip Size-Dependent Light Extraction Efficiency for Blue Micro-LEDs (청색 마이크로 LED의 광 추출 효율에 미치는 칩 크기 의존성 연구)

  • Park, Hyun Jung;Cha, Yu-Jung;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.47-52
    • /
    • 2019
  • Micro-LEDs show lower efficiencies compared to general LEDs having large areas. Simulations were carried out using ray-tracing software to investigate the change in light extraction efficiency and light distribution according to chip-size of blue flip-chip micro-LEDs (FC ${\mu}-LEDs$). After fixing the height of the square FC ${\mu}-LED$ chip at $158{\mu}m$, the length of one side was varied, with dimensions of 2, 5, 10, 30, 50, 100, 300, and $500{\mu}m$. The highest light-extraction efficiency was obtained at $10{\mu}m$, beyond which the efficiency decreased as the chip-size increased. The chip size-dependence of the FC ${\mu}-LEDs$ both without the patterned sapphire substrate, as well as vertical FC ${\mu}-LEDs$, were analyzed.

Dependency of Light Extraction Efficiency on Sapphire Substrate Pattern Shapes in Light Emitting Diodes (질화물계 발광다이오드에서 광 추출 효율의 패턴 기판 의존성)

  • Jang, Dong-Hyeon;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.355-356
    • /
    • 2008
  • The light extraction efficiencies of GaN-based light-emitting diodes (LEDs) grown on differently patterned sapphire substrates were investigated by using the ray tracing method. It was found that angle of the pattern surface against the sapphire surface, the number of pattern per unit area were important structural factors for high extraction efficiency.

  • PDF

Analysis of the extraction efficiency in GaN-light emitting diodes using ray tracing simulation (광경로 시뮬레이션을 이용한 GaN-LED칩의 광추출 효율 분석)

  • Lee, Jin-Bock;Yoon, Sang-Ho;Kim, Dong-Woohn;Choi, Chang-Whan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.575-576
    • /
    • 2006
  • It was analyzed qualitatively the light extraction in GaN-on-sapphire LEDs based on a simple model. The light extraction efficiency in the LEDs is simulated numerically by using ray tracing method. In the present study, the extraction efficiency was simulated on three different types of LEDs, which a have a different pattered sapphire substrate. And, the role of the patterned sapphire substrate are analyzed and discussed. Based on the analysis, the improvements of extraction efficiency in the LED structures were discussed and these analyses are helpful in the design of high brightness GaN LEDs.

  • PDF