• Title/Summary/Keyword: Limestone powder

Search Result 111, Processing Time 0.036 seconds

Diffusion of Chloride Ions in Limestone Powder Concrete

  • Moon Han-Young;Jung Ho-Seop;Kim Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.859-865
    • /
    • 2004
  • In this study, the diffusion of chloride ions in cement concrete made with and without the limestone powder was investigated. In order to study the effect of the limestone powder, all mixtures were prepared at a fixed water-cementitious ratio (0.45). From the experimental results, the setting time of limestone powder concrete is faster than that of control concrete, and compressive strength of all specimens decreased with increasing replacement ratio of limestone powders. The diffusion properties of limestone powder concretes indicated a trend increasing with curing period. LSA10 and LSA20 concretes, the diffusion coefficient was smaller than that of control concrete. The addition of $10-20\%$ limestone powder reduces the diffusion coefficient of chloride ions, irrespective of fineness levels of limestone powder.

Durability in Concrete Containing Limestone Powder and Slag Powder (석회석 미분말과 슬래그 미분말을 혼합한 콘크리트의 내구성)

  • 구봉근;이재범;이현석;박주원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.82-85
    • /
    • 2003
  • This study is to investigate durability in concrete containing slag powder and limestone power. The variables are the substitution ratio of slag powder and limestone powder. In order to study the effect of slag powder and limestone powder, all mixtures were prepared at a fixed water/cement ratio, slump, and entrained air quantity. When concrete containing slag powder is mixing rate 40%, durability appeared the highest in general. When concrete containing limestone powder is mixing rate 10% in all experiments, the most suitable result appeared.

  • PDF

Characteristic on the Resistance of Chloride Infiltration in Concrete Containing Limestone Powder (석회석 미분말 혼합 콘크리트의 염소이온 침투 저항 특성)

  • 구봉근;라재웅;류택은;이재범;이현석;이기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.75-80
    • /
    • 2002
  • This study is to investigate the characteristic on the resistance of chloride infiltration concrete containing limestone powder The variables are the substitution ratio of slag powder and limestone powder. In order to study the effect slag powder and limestone powder, all mixtures were prepared at a fixed water/cement ratio, slump, and entrained air quantity. As results show that the strength and the resistance of chloride infiltration in concrete substitution 10%, 20% limestone powder, and 30%, 40% slag powder are positive.

  • PDF

Influence of Limestone Powder on the Hydration of slag cement (슬래그 시메\ulcorner의 수화반응에 미치는 석회석 분말의 영향)

  • 이민석;윤철현;최현국
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.85-88
    • /
    • 1999
  • We tested the limestone powder as a filler powder for the effective use of slag cement. Hydration process were investigated by measuring the thermal differential analysis(DTA), compressive strength, XRD patterns, calorimeter of slag cement-limestone powder paste prepared by mixing limestone powder-slag cement. The results obtained in this study, there were no significant difference between the cases of adding up to 5% limestone powder, but the reaction time was accelerated. Also the compressive strength was increased for adding up to 5% limestone powder. The min hydrated paste products were Ca(OH)2 and calcium silicate hydrates. In the case of mixed limestone powder peak appear tricalcium carboaluminate hydrate in the sample of 7 days hydration.

  • PDF

Setting and Hydration Heat Development Characteristics with Binder Types (결합재 종류에 따른 응결과 수화발열 특성)

  • 박찬규;이승훈;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.369-374
    • /
    • 2002
  • In this paper, setting and hydration heat development characteristics with three binder types, type IV cement+fly ash, type IV cement+slag powder and type IV cement + limestone powder. were investigate. As results, it was shown that the limestone powder decreased the initial setting time regardless of replacement ratio, especially the range of 20~50% replacement ratio, and the 2nd peak was shifted ahead when the limestone powder replacement ratio increased. But for the f1y ash and the limestone powder, contrary results were obtained compared with the limestone powder.

  • PDF

Sulfate Resistance of Cement Matrix Containing Limestone Powder

  • Moon Han-Young;Jung Ho-Seop;Lee Seung-Tae;Kim Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.433-440
    • /
    • 2004
  • In order to improve the performance of concrete, generally, modern cements often incorporate several mineral admixtures. In this study, the experimental included the flow value, air content of mortar containing limestone powder and length change and compressive strength of mortar specimen immersed in sulfate solutions. From the experimental results, the limestone powder cement matrices improved the physical properties and sulfate resistance of cement matrices at $10\%$ replacement ratio of limestone powder. The $30\%$ replacement ratio of limestone powder was significantly deteriorated in sodium sulfate solution. Irrespective of fineness levels of limestone powder, length change and SDF of mortar specimens with only $10\%$ replacement was much superior to the other replacements.

A Study on Strength Development and Resistance to Sulfate Attack of Mortar Incorporating Limestone Powder (석회석미분말 혼입 모르타르의 강도발현 및 황산염 침해에 대한 저항성에 관한 연구)

  • Koh Kyung-Taek;Yoo Won-Wi;Han Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.303-310
    • /
    • 2004
  • The purpose of this study was to investigate the effect of using method and replacement ratio of limestone powder and water-cement ratio on the compressive strength and the resistance to sulfate attack of mortar incorporating limestone powder as fundamental study to use limestone powder as an addition for concrete. As a results, The method using limestone powder as a part of cement showed decrease of the compressive strength of mortar. The strength of mortar incorporating limestone powder almost decided upon unit cement content. It was recognized that the method replacing limestone powder as a part of cement was effective to decrease the heat of hydration in concrete. The method using limestone powder as a part of fine aggregate showed the considerable increase of the strength and resistance to sulfate attack of concrete. Furthermore, it was recognized that the method using limestone powder as a part of fine aggregate were effective materials as an addition for concrete in view of the improvement of strength and resistance to sulfate attack.

Fundamental Properties of Limestone Powder Added Cement Environment-friendly Concrete for Concrete Pavement (석회석미분말을 함유한 친환경 시멘트콘크리트의 도로포장 적용을 위한 기초 연구)

  • Choi, Woo-Hyeon;Park, Cheol-Woo;Jung, Won-Kyong;Kim, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.37-49
    • /
    • 2012
  • PURPOSES : This study is to investigate the fundamental properties of limestone added cement concrete for application of pavement. METHODS : As the production of Portland cement causes environmental problems, engineers have sought more environment-friendly concrete construction materials. Limestone powder can be used for concrete as a partial replacement of Portland cement. One of the great applications of limestone powder added cement concrete might be a cement concrete pavement since the concrete pavement consumes massive quantity of Portland cement. Experimental variables were different replacement level of limestone powder by 0% to 25% with 5% increment. Before hardening of fresh concrete, setting time and plastic shrinkage characteristics were investigated in addition to other basic properties. Properties of hardened concrete included compressive, tensile and flexural strength as well as drying shrinkage. RESULTS : The addition of limestone powder did not significantly affect the properties of fresh concrete. Strength deceased as the replacement ratio increased and when the replacement ratio was greater than 10% decrease rate increased. CONCLUSIONS : It was found that the partial replacement of the limestone powder to cement in pavement materials can be positively considered as its mechanical properties show comparable performance to those normal concrete.

Effects of Limestone Powder on the Fluidity of Ordinary Portland Cement Paste (보통 포틀랜드 시멘트 페이스트의 유동특성에 미치는 석회석 미분말의 영향)

  • Lee, Seung-Heun;Park, Jeong-Soo;Lee, Jeong-In;Cho, Jae-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.149-156
    • /
    • 2013
  • This study examines the effects of limestone's factors on the fluidity of cement paste when of up to 15%. As the substitution ratio of limestone powder increases, the fluidity of the paste is also improved; however, it has no correlation to the $CaCO_3$ content of the limestone, fineness of the limestone, and fluidity of the pastes. Regardless of clay content of the limestone, it showed a similar mini-slump, so there was no correlation between the clay content and the fluidity of the paste. Also, the total organic carbon content of the limestone and the fluidity of the paste showed no correlation. Regardless of the limestone's grade or fineness, n value of powder gained by using the Rosin-Rammler distribution function showed that the fluidity of the paste increased as the n value reduced. It was also shown that particle size distribution of ordinary Portland cement with limestone powder had a major effect on the fluidity of the paste.

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.