• Title/Summary/Keyword: Limiting temperature

Search Result 411, Processing Time 0.024 seconds

Determination of limiting temperatures for H-section and hollow section columns

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.309-325
    • /
    • 2012
  • The risk of progressive collapse in steel framed buildings under fire conditions is gradually rising due to the increasing use of combustible materials. The fire resistance of such steel framed buildings is evaluated by fire tests. Recently, the application of performance based fire engineering makes it easier to evaluate the fire resistance owing to various engineering techniques and fire science. The fire resistance of steel structural members can be evaluated by the comparison of the limiting temperatures and maximum temperatures of structural steel members. The limiting temperature is derived at the moment that the failure of structural member results from the rise in temperature and the maximum temperature is calculated by using a heat transfer analysis. To obtain the limiting temperatures for structural steel of grades SS400 and SM490 in Korea, tensile strength tests of coupons at high temperature were conducted. The limiting temperatures obtained by the tensile coupon tests were compared with the limiting temperatures reported in the literature and the results of column fire tests under four types of loading with different load ratios. Simple limiting temperature formulas for SS400 and SM490 steel based on the fire tests of the tensile coupons are proposed. The limiting temperature predictions using the proposed formulas were proven to be conservative in comparison with those obtained from H-section and hollow section column fire tests.

Evaluation of Limiting Temperatures of Rectangular Hollow Sections (각형 강관기둥부재의 한계온도 평가 연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.331-332
    • /
    • 2012
  • Structural steel has been used as a primary materials to columns and beams since 1960's in Korea with an advantages of excellent of load-bearing capacity and design flexibility, and faster construction. However, if the steel columns made of structural steel exposed to fire the load-bearing capacity is going down steadily and finally reach to collapse. Therefore, building regulation requires fire resistance according to building occupation, scales. The fire resistance can be evaluated two categories. One is prescriptive method that is based on building regulation, specification and so on and the other is performance-based fire engineering method. The latter can be designed based on scientific and engineering consequences. The easiest evaluation way using the fire engineering design is comparing to the limiting temperature and maximum temperature calculated based on heat transfer theory. If the limiting temperature of a column exceeds the maximum temperature of it, the column can carry the load during the fire. Therefore, the database of limiting temperature is very essential for evaluation of column. In this paper, to build the database of column made of rectangular hollow sections 8 fire tests with loading were conducted and the relation between the limiting temperature and the applied loads showed in reverse proportion.

  • PDF

A Study of Nitrogen Metabolism in Lemnaceae -Limiting Factors of Distribution of Spirodela Polyrhiza and Lemna aequinoctialis- (개구리밥과 식물의 질소대사에 관한 연구)

  • Chang, Nam-Kee;Oh, In-Hye;Kim, Heui-Baik;Yoo, Hae-Mee;Eo, Eun-Joo
    • The Korean Journal of Ecology
    • /
    • v.13 no.3
    • /
    • pp.215-224
    • /
    • 1990
  • The distribution of Spirodela polyrhiza and Lemna aequinoctialis was investigated and the limiting factors on the distribution were analyzed. At 66 sites in Korea, the presense or absense of duckweed were recorded and the water was sampled. The temperature, hardness, pH and contents of N, , , Na, K, Ca, Cu, Mg, Zn, Fe, Ni, Mn and Cd of water sampled were analyzed. The results were as follows; It seemed that the limiting factors influencing on the distribution was water temperature and concentration of . The critical temperature of the distribution of Spirodela and Lemna was presented 19.5$^{\circ}C$ and concentration of was limiting factor only in the distribution of S. polyrhiza. L. aequinoctialis was distributed in lower temperature than S. polyrhiza and it seemed that the distribution of L. aequinoctialis was not be influenced by the concentration of .

  • PDF

Characteristics of a 190 kVA Superconducting Fault current Limiting Element (190 kVA급 초전도한류소자의 특성)

  • Ma, Y.H.;Li, Z.Y.;Park, K.B.;Oh, I.S.;Ryu, K.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • We are developing a 22.9 kV/25 MVA superconducting fault current limiting(SFCL) system for a power distribution network. A Bi-2212 bulk SFCL element, which has the merits of large current capacity and high allowable electric field during fault of the power network, was selected as a candidate for our SFCL system. In this work, we experimentally investigated important characteristics of the 190 kVA Bi-2212 SFCL element in its application to the power grid e.g. DC voltage-current characteristic, AC loss, current limiting characteristic during fault, and so on. Some experimental data related to thermal and electromagnetic behaviors were also compared with the calculated ones based on numerical method. The results show that the total AC loss at rated current of the 22.9 kV/25 MVA SFCL system, consisting of one hundred thirty five 190 kVA SFCL elements, becomes likely 763 W, which is excessively large for commercialization. Numerically calculated temperature of the SFCL element in some sections is in good agreement with the measured one during fault. Local temperature distribution in the190 kVA SFCL element is greatly influenced by non-uniform critical current along the Bi-2212 bulk SFCL element, even if its non-uniformity becomes a few percentages.

A Study on the Limiting Factors in Nitrogen Removal with Fixed Biofilm Process (고정생물막 공법을 이용한 질소제거에 있어서 제한요인에 관한 연구)

  • 지용희
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.63-68
    • /
    • 1996
  • This study was to discuss limiting factors influenced on the removal efficiencies of nitrogenous compounds investigated using the polypropyrene media which was to attach microorganism in order to apply the fixed-biofilm process. The main limiting factors are the hydraulic retention time (HRT), C/N ratio, $COD/NO_{3}-N$ ratio and temperature. The hydraulic retention time HRT were 6, 8, 10, 12 hrs and the C/N ratio range was 2.5-9.5. The $COD/NO_{3}-N$ ratio range was 3.2-21.9 and the temperature were 15, 20, 25, 30, $35^{\circ}C$, respectively. The results of this study are summerized as follows. 1. Hydraulic retention time (HRT) to obtain removal efficiencies of T-N higher than 85% had to be 10 hrs above. 2. The removal efficiencies of T-N decreased at C/N ratio from 6.2 to 4.8 in this anoxic-contact aeration system. 3. Denitrification rate decreased at $COD/NO$_{3}$-N$ ratio from 8.0 to 5.0 4. As temperature increased, removal efficiencies of T-N increased.

  • PDF

A Study on The Spontaneous Ignition of a Hydroxy Propyl Methyl Cellulose Dust Cloud (Hydroxy Propyl Methyl Cellulose 분진의 운상자연발화에 관한 연구)

  • Lim, Woo-Sub;Mok, Yun-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.137-140
    • /
    • 2004
  • The minimum ignition temperature at which the dust cloud can spontaneously ignite is considered to be very important in industries to prevent explosion occurring in hot surfaces. This paper has dealt with the experimental study of the determination of minimum ignition temperature of Hydroxy Propyl Methyl Cellulose (HPMC) dust cloud. We have used the Godbert-Greenwald Furnace Apparatus to determine the ignition temperature and limiting oxyten concentration for dust could. The experimental determinations on the minimum ignition temperature were carried out with various particle size with nominal diameters 45, 75 and 106${\mu}m$. The limiting oxygen concentration of dust cloud was determinated for the smaller size(45${\mu}m$) HPMC. Minimum ignition temperature of dust cloud was at 364$^{\circ}C$ for the concentration of 2.5g/L in the air and became higher with the increasing of nitrogen concentration. It was also found that the ignition didn't occur when the oxygen concentration was below 10%, and limiting oxygen concentration is at 11%.

Plastification procedure of laterally-loaded steel bars under a rising temperature

  • Huang, Zhan-Fei;Tan, Kang-Hai;England, George L.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.699-715
    • /
    • 2010
  • This paper investigates the structural responses of axially restrained steel beams under fire conditions by a nonlinear finite element method. The axial restraint is represented by a linear elastic spring. Different parameters which include beam slenderness ratio, external load level and axial restraint ratio are investigated. The process of forming a mid-span plastic hinge at the mid-span under a rising temperature is studied. In line with forming a fully plastic hinge at mid-span, the response of a restrained beam under rising temperature can be divided into three stages, viz. no plastic hinge, hinge forming and rotating, and catenary action stage. During catenary action stage, the axial restraint pulls the heated beam and prevents it from failing. This study introduces definitions of beam limiting temperature $T_{lim}$, catenary temperature $T_{ctn}$ and warning time $t_{wn}$. Influences of slenderness ratio, load level and axial restraint ratio on $T_{lim}$, $T_{ctn}$ and $t_{wn}$ are examined.

Moment curvature method for fire safety design of steel beams

  • Yu, H.X.;Richard Liew, J.Y.
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.227-246
    • /
    • 2004
  • This paper presents a moment-curvature method that accounts for the strength deterioration of steel at elevated temperature in estimating the response of steel beams exposed to fire. A modification to the EC4 method is proposed for a better estimation of the temperature distribution in the steel beam supporting a concrete slab. The accuracy of the proposed method is verified by comparing the results with established test results and the nonlinear finite element analysis results. The beam failure criterion based on a maximum strain of 0.02 is proposed to assess the limiting temperature as compared to the traditional criteria that rely on deflection limit or deflection rate. Extensive studies carried out on steel beams with various span lengths, load ratios, beam sizes and loading types show that the proposed failure criterion gives consistent results when compared to nonlinear finite element results.

On the Design of Cold Storage for Fruits and Vegetables (1) -Design of Natural Ventilating Type Store for Citrus Furits in Jejudo- (청과물 저온저장고의 설계에 관한 연구 (1) -자연환기를 이용한 제주산밀감저장고의 설계-)

  • Hur Jong-Wha;Kim Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.5 no.4
    • /
    • pp.272-280
    • /
    • 1976
  • A natural ventilating type store was designed for the economic and effective storage of citrus fruits in Jejudo. The material used for the wall is scoria, widely distributed in Jejudo and known for high strength and insulation. Design condition was chosen for the period till March of a year and the dry bulb temperature was taken from TAC $5\%$ base. The temperature of the store can be maintained below the limiting temperature of $8^{\circ}C$ for the time length of $7\frac{1}{2}$ hours under the condition of the atmospheric temp, $15.3^{\circ}C$ and the solar insolation. The limiting temperature can he recovered to the initial temperature $(7^{\circ}C)$ by the natural ventilation for 8 hours in the night.

  • PDF

Optical Limiting Properties of Multi-Walled Carbon Nanotube Suspensions (다중벽 탄소 나노튜브 현탁액의 광 리미팅 특성)

  • Yu Hyojung;Kim Sok Won
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.449-454
    • /
    • 2004
  • The optical limiter is an optical component which reduces laser beam intensity for the protection of eyes and light sensors. Carbon nanotube is now known as a highly efficient optical limiting material. Optical limiting effect of the multi-walled carbon nanotube suspensions, in several kinds of solvents such as distilled water, chloroform, ethanol and ethylene glycol, were measured in the range from room temperature to near to the boiling points of the solvents. The pulsed Nd:YAG laser whose wavelength is 1064 nm and pulse duration is 6 ns was used as a light source. The experimental result shows that the limiting efficiency was reduced as the temperature increased, and the suspension which has lower boiling point, viscosity and surface tension has highest efficiency.