• Title/Summary/Keyword: Line pivot

Search Result 26, Processing Time 0.017 seconds

Comparison of the Performance of Pivoted Pad Thrust Bearings (피봇식 패드 추력베어링의 성능 비교)

  • 김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.337-342
    • /
    • 1998
  • In this paper the lubrication performances of line pivoted pad thrust bearing and point pivoted pad thrust bearing are studied by a numerical analysis. The running characteristic parameters such as nondimensional load carrying capacity nondimensional friciton power loss nondimensional flow rate and film thickness ratios are calculated for various circumferential pivot positions. The results provide a usdful data for the selection of pivot position in a pivoted and thrust bearing.

  • PDF

A Study on the Parallel Line Pivoted Pad Thrust Bearing (평행선 지지식 추력베어링에 관한 연구)

  • 이경우;김종수;제양규
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.24-28
    • /
    • 1999
  • This paper describes a new pivoting technique to improve bearing performance in pivoted pad thrust bearings. This new technique adjusts the pivot line in a line pivoted pad thrust bearing to be parallel to the trailing edge of a sector shaped pad. Bearing performance factors such as load carrying capacity, frictional torque and flow rate are numerically investigated for conventional point-pivoted and line-pivoted pads and for the new parallel-line pivoting technique. It is shown that the load carving capacity can be maximized with the new technique.

A study on the Static and Dynamic Characteristics of Tilting Pad Thrust Bearing by Approximate Elasto-Thermohydrodynamic Lubrication Analysis (근사 탄성열유체윤활해석에 의한 틸팅 패드 트러스트 베어링의 정특성 및 동특성에 관한 연구)

  • Hwang, Pyung;Lee, Kwang-Hee
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.35-45
    • /
    • 1994
  • The thermohydrodynamic analysis of tilting pad thrust bearing is studied with the consideration of elastic effect of pad. Reynolds equation, deflection equation and energy equation are solved simultaneously with the boundary conditions. Reynolds equation is modified as the approximate form. Pads are supported by the line pivot and the point pivot respectively. Pads are considered as the flat planes. Effects of pad thickness on the performance of thrust bearing are emphasized and the performances of rigid pad and elastic pad are compared. Effects of inlet temperature on performances of the bearing are compared. Dynamic characteristics of both pad supported by line and point pivot are compared.

A PIVOT based Query Optimization Technique for Horizontal View Tables in Relational Databases (관계 데이터베이스에서 수평 뷰 테이블에 대한 PIVOT 기반의 질의 최적화 방법)

  • Shin, Sung-Hyun;Moon, Yang-Sae;Kim, Jin-Ho;Kang, Gong-Mi
    • The KIPS Transactions:PartD
    • /
    • v.14D no.2
    • /
    • pp.157-168
    • /
    • 2007
  • For effective analyses in various business applications, OLAP(On-Line Analytical Processing) systems represent the multidimensional data as the horizontal format of tables whose columns are corresponding to values of dimension attributes. Because the traditional RDBMSs have the limitation on the maximum number of attributes in table columns(MS SQLServer and Oracle permit each table to have up to 1,024 columns), horizontal tables cannot be directly stored into relational database systems. In this paper, we propose various efficient optimization strategies in transforming horizontal queries to equivalent vertical queries. To achieve this goral, we first store a horizontal table using an equivalent vertical table, and then develop various query transformation rules for horizontal table queries using the PIVOT operator. In particular, we propose various alternative query transformation rules for the basic relational operators, selection, projection, and join. Here, we note that the transformed queries can be executed in several ways, and their execution times will differ from each other. Thus, we propose various optimization strategies that transform the horizontal queries to the equivalent vertical queries when using the PIVOT operator. Finally, we evaluate these methods through extensive experiments and identify the optimal transformation strategy when using the PIVOT operator.

An Efficient Query Transformation for Multidimensional Data Views on Relational Databases (관계형 데이타베이스에서 다차원 데이타의 뷰를 위한 효율적인 질의 변환)

  • Shin, Sung-Hyun;Kim, Jin-Ho;Moon, Yang-Sae
    • Journal of KIISE:Databases
    • /
    • v.34 no.1
    • /
    • pp.18-34
    • /
    • 2007
  • In order to provide various business analysis methods, OLAP(On-Line Analytical Processing) systems represent their data with multidimensional structures. These multidimensional data are often delivered to users in the horizontal format of tables whose columns are corresponding to values of dimension attributes. Since the horizontal tables nay have a large number of columns, they cannot be stored directly in relational database systems. Furthermore, the tables are likely to have many null values (i.e., sparse tables). In order to manage the horizontal tables efficiently, we can store them as the vertical format of tables which has dimension attribute names as their columns thus transforms the columns of horizontal tables into rows. In this way, every queries for horizontal tables have to be transformed into those for vertical tables. This paper proposed a technique for transforming horizontal table queries into vertical table ones by utilizing not only traditional relational algebraic operators but also the PIVOT operator which recent DBMS versions are providing. For achieving this goal, we designed a relational algebraic expression equivalent to the PIVOT operator and we formally proved their equivalence. Then, we developed a transformation technique for horizontal table queries using the PIVOT operator. We also performed experiments to analyze the performance of the proposed method. From the experimental results, we revealed that the proposed method has better performance than existing methods.

Dynamic Characteristics of Parallel Line Pivoted Pad Thrust Bearing (평행라인 피봇식 추력베어링의 동특성 해석)

  • 이경우;김종수;제양규
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.274-281
    • /
    • 2000
  • In this paper, linearized dynamic characteristics of parallel line pivoted pad thrust bearing (here-inafter refer to PLP thrust bearing) was analyzed by perturbation method with inlet pressure. Inlet pressure and excitation frequency influence dynamic characteristics of PLP thrust bearing at all operating conditions, such as angular pivot position, mass of pad. Therefore, the characteristics have to be analyzed with inlet pressure, excitation frequency, mass of pad and thickness of pad. Otherwise, the analysis may be over or under estimate.

Dynamic Characteristics of Parallel tine Pivoted Pad Thrust Bearing (평행라인 피봇식 추력베어링의 동특성 해석)

  • 이경우;김종수;제양규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.111-118
    • /
    • 1999
  • In this paper, linearized dynamic characteristics of parallel line pivoted pad thrust bearing(hereinafter refer to PLP thrust bearing) was analyzed by perturbation method with inlet pressure. Inlet pressure and excitation frequency irfluence dynamic characteristics of PLP thrust bearing at all operating condition, such as angular pivot position, mass of pad. Therefore, the characteristics is have to analyzed with inlet pressure, excitation frequency, mass of pad and thickness of pad. Otherwise, the analysis is able to estimate the characteristics over or under.

  • PDF

Study on 'All Articulations are Controlled by the Gallbladder' in Chimgugyeongheombang (『침구경험방(鍼灸經驗方)』 '제절개속담(諸節皆屬膽)'에 대한 고찰)

  • Jang, Heewon;Jeong, Sangseon;Song, Jichung;Eom, Dongmyung
    • Journal of Korean Medical classics
    • /
    • v.29 no.4
    • /
    • pp.95-103
    • /
    • 2016
  • Objectives : This paper aims to study how 'All articulations are controlled by the gallbladder' as urged by Heoim in Chimgugyeongheombang was reflected in the clinical field, and look into the reason for his assertion. Methods : The paper looked into Chimgugyeongheombang and 1) found examples of how acupoints related to gallbladder were used to treat articulation-related diseases, and 2) investigated the relation between gallbladder and articulations through analyzing the acupoints used for treating articulation-related diseases. These are then compared with Zhenjiuzishengjing to see if the assertions made in 'All articulations are controlled by the gallbladder' were actually applied in clinical fields. Results & Conclusions : Heoim dealt with 20 points out of the 44 acupoints for gallbladder, and used 14 of them for treatments of articulation-related diseases. Gallbladder acupoints were used for ten illnesses, and four of them were related to articulation. Chimgujasaenggyeong showed a difference in that it did not utilize gallbladder acupoints to treat these illnesses. Out of 33 articulation-related illnesses, gallbladder meridians and acupoints were suggested as a means to treat them in 15 cases, and this is an increase in the usage of these points compared to Chimgugyeongheombang. In other words, Heoim actively utilized gallbladder meridian points in treating articulation-related illnesses. The reason Heoim drew a line between gallbladder and articulations is because gallbladder is categorized as a lesser yang pivot and articulations itself functions as a pivot by acting as a pivot for human body movement.

A STUDY ON THE MANDIBULAR MOMENTS ACCORDING TO ANTERO-POSTERIOR PLACEMENT OF PIVOT ON LOWER NATURAL DENTITION (자연치열에 설치한 pivot의 전후방 일치변화에 따른 하악의 moment에 관한 연구)

  • Lee Hyun-Shick;Park Nam-Soo;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.394-410
    • /
    • 1993
  • This study was accomplished for appreciation of the mandibular moments according to antero- posterior movement of pivot placed on the lower natural dentition. For this study, 20 subjects(male, $21\sim30$ yrs., average age 24) in the category of normal occlusion were selected, and the intraoral Vitallium clutches were cast and fabricated for each subjects. A 2-dimension PSD(Position Sensitive Detector, Hamamatsu Photonics Co., Japan) was attached to maxillary clutch in a mode of three dimensional control and LED (Light Emit Diode, Hamamatsu Photonics Co., Japan) was set up on mandibular clutch. Both clutches were set into oral cavity of each subjects and adjusted. Then the subjects were allowed to intercuspated with maximal bite force while the pivoting ball in the mid-line moving from anterior toward posterior position. The displacement scales were recorded by CCD camera(Sony, CCD-TR-705) and VCR, The conclusions were as follows : 1. When the subject was allowed to bite the metal pivoting ball in the midline of lower dentition with maximal bite force voluntarily while moving from lower central incisor to canine, 1st premolar, End premolar, 1st molar and 2nd molar. The lever actions on the pivot were revealed in all subjects. The equilibrium of moment were revealed on the pivots of 1st premolar(14 subjects), End premolar(4 subjects), and canine(2 subjects) areas. 2. The changes of loading on the TMJ according to antero-posterior positional changes of metal pivoting ball were able to recognize as follow. Compression on the TMJ was increased when the pivot moves anteriorly from the equilibrium point, and tension on the TMJ was increased when posteriorly. 3. 13 subjects were recognized their habitual chewing sides(Rights, Left8), and 7 subjects were not. During maximal biting, mandible was displaced toward their habitual chewing sides on the metal pivoting ball in the frontal plane. 4. In cephalometric analysis, the average genial angle of 20 subjects was $116.75^{\circ}$ and the average mandibular body length was 79.77mm. The equilibrium points of mandibular moment were positioned more posteriorly in the subjects having larger Genial angle than in the smaller(p<0.05). Relationships among the angle between FH plane and occlusal plane, the angle between occlusal plane and mandibular plane , and mandibular body length were not significant(p>0.05).

  • PDF

Incremental Maintenance of Horizontal Views Using a PIVOT Operation and a Differential File in Relational DBMSs (관계형 데이터베이스에서 PIVOT 연산과 차등 파일을 이용한 수평 뷰의 점진적인 관리)

  • Shin, Sung-Hyun;Kim, Jin-Ho;Moon, Yang-Sae;Kim, Sang-Wook
    • The KIPS Transactions:PartD
    • /
    • v.16D no.4
    • /
    • pp.463-474
    • /
    • 2009
  • To analyze multidimensional data conveniently and efficiently, OLAP (On-Line Analytical Processing) systems or e-business are widely using views in a horizontal form to represent measurement values over multiple dimensions. These views can be stored as materialized views derived from several sources in order to support accesses to the integrated data. The horizontal views can provide effective accesses to complex queries of OLAP or e-business. However, we have a problem of occurring maintenance of the horizontal views since data sources are distributed over remote sites. We need a method that propagates the changes of source tables to the corresponding horizontal views. In this paper, we address incremental maintenance of horizontal views that makes it possible to reflect the changes of source tables efficiently. We first propose an overall framework that processes queries over horizontal views transformed from source tables in a vertical form. Under the proposed framework, we propagate the change of vertical tables to the corresponding horizontal views. In order to execute this view maintenance process efficiently, we keep every change of vertical tables in a differential file and then modify the horizontal views with the differential file. Because the differential file is represented as a vertical form, its tuples should be converted to those in a horizontal form to apply them to the out-of-date horizontal view. With this mechanism, horizontal views can be efficiently refreshed with the changes in a differential file without accessing source tables. Experimental results show that the proposed method improves average performance by 1.2$\sim$5.0 times over the existing methods.