• Title/Summary/Keyword: Link Adaptation

Search Result 101, Processing Time 0.027 seconds

Link Adaptation and Selection Method for OFDM Based Wireless Relay Networks

  • Can, Basak;Yomo, Hiroyuki;Carvalho, Elisabeth De
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.118-127
    • /
    • 2007
  • We propose a link adaptation and selection method for the links constituting an orthogonal frequency division multiplexing (OFDM) based wireless relay network. The proposed link adaptation and selection method selects the forwarding, modulation, and channel coding schemes providing the highest end-to-end throughput and decides whether to use the relay or not. The link adaptation and selection is done for each sub-channel based on instantaneous signal to interference plus noise ratio (SINR) conditions in the source-to-destination, source-to-relay and relay-to-destination links. The considered forwarding schemes are amplify and forward (AF) and simple adaptive decode and forward (DF). Efficient adaptive modulation and coding decision rules are provided for various relaying schemes. The proposed end-to-end link adaptation and selection method ensures that the end-to-end throughput is always larger than or equal to that of transmissions without relay and non-adaptive relayed transmissions. Our evaluations show that over the region where relaying improves the end-to-end throughput, the DF scheme provides significant throughput gain over the AF scheme provided that the error propagation is avoided via error detection techniques. We provide a frame structure to enable the proposed link adaptation and selection method for orthogonal frequency division multiple access (OFDMA)-time division duplex relay networks based on the IEEE 802.16e standard.

Coherence Time Estimation for Performance Improvement of IEEE 802.11n Link Adaptation (IEEE 802.11n에서 전송속도 조절기법의 성능 향상을 위한 Coherence Time 예측 방식)

  • Yeo, Chang-Yeon;Choi, Mun-Hwan;Kim, Byoung-Jin;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.232-239
    • /
    • 2011
  • IEEE 802.11n standard provides a framework for new link adaptation. A station can request that another station provide a Modulation and Coding Scheme (MCS) feedback, to fully exploit channel variations on a link. However, if the time elapsed between MCS feedback request and the data frame transmission using the MCS feedback becomes bigger, the previously received feedback information may be obsolete. In that case, the effectiveness of the feedback-based link adaptation is compromised. If a station can estimate how fast the channel quality to the target station changes, it can improve accuracy of the link adaptation. The contribution of this paper is twofold. First, through a thorough NS-2 simulation, we show how the coherence time affects the performance of the MCS feedback based link adaptation of 802.11n networks. Second, this paper proposes an effective algorithm for coherence time estimation. Using Allan variance information statistic, a station estimates the coherence time of the receiving link. A proposed link adaptation scheme considering the coherence time can provide better performance.

Link Adaptation for Full Duplex Systems

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.92-100
    • /
    • 2018
  • This paper presents a link adaptation scheme for adaptive full duplex (AFD) systems. The signal modulation levels and communication link patterns are adaptively selected according to the changing channel conditions. The link pattern selection process consists of two successive steps such as a transmit-receive antenna pair selection based on maximum sum rate or minimum maximum symbol error rate, and an adaptive modulation based on maximum minimum norm. In AFD systems, the antennas of both nodes are jointly determined with modulation levels depending on the channel conditions. An adaptive algorithm with relatively low complexity is also proposed to select the link parameters. Simulation results show that the proposed AFD system offers significant bit error rate (BER) performance improvement compared with conventional full duplex systems with perfect or imperfect self-interference cancellation under the same fixed sum rate.

Link Adaptation with SNR Offset for Wireless LAN Systems (무선 LAN 시스템에서의 SNR 오프셋을 이용한 링크 적응화)

  • Kim, Chan-Hong;Jeong, Kyo-Won;Ko, Kyeong-Jun;Lee, Jung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.839-846
    • /
    • 2011
  • Link Adaptation should select the best modulation and coding scheme (MCS) which gives the highest throughput as channel conditions vary. Several link adaptation algorithms for wireless local area network (WLAN) have been proposed but for the future WLAN systems such as 802.11n system, these algorithms do not guarantee the best performance. In this paper, we propose a new link adaptation algorithm in which an MCS level is chosen by the received SNR plus the offset value obtained from the transmission results. The performance of proposed algorithm is simulated by an IEEE 802.11n system. From the analysis, we conclude the proposed algorithm performs better than the well-known link adaptation algorithms such as auto rate fallback and general SNR-based techniques. Particularly, the proposed algorithm improves throughput when the packet error ratio (PER) is constrained for fast fading channels.

Machine-Learning-Based Link Adaptation for Energy-Efficient MIMO-OFDM Systems (MIMO-OFDM 시스템에서 에너지 효율성을 위한 기계 학습 기반 적응형 전송 기술 및 Feature Space 연구)

  • Oh, Myeung Suk;Kim, Gibum;Park, Hyuncheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.407-415
    • /
    • 2016
  • Recent wireless communication trends have emphasized the importance of energy-efficient transmission. In this paper, link adaptation with machine learning mechanism for maximum energy efficiency in multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) wireless system is considered. For reflecting frequency-selective MIMO-OFDM channels, two-dimensional capacity(2D-CAP) feature space is proposed. In addition, machine-learning-based bit and power adaptation(ML-BPA) algorithm that performs classification-based link adaptation is presented. Simulation results show that 2D-CAP feature space can represent channel conditions accurately and bring noticeable improvement in link adaptation performance. Compared with other feature spaces, including ordered postprocessing signal-to-noise ratio(ordSNR) feature space, 2D-CAP has distinguished advantages in either efficiency performance or computational complexity.

The Estimation of Link Travel Speed Using Hybrid Neuro-Fuzzy Networks (Hybrid Neuro-Fuzzy Network를 이용한 실시간 주행속도 추정)

  • Hwang, In-Shik;Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.306-314
    • /
    • 2000
  • In this paper we present a new approach to estimate link travel speed based on the hybrid neuro-fuzzy network. It combines the fuzzy ART algorithm for structure learning and the backpropagation algorithm for parameter adaptation. At first, the fuzzy ART algorithm partitions the input/output space using the training data set in order to construct initial neuro-fuzzy inference network. After the initial network topology is completed, a backpropagation learning scheme is applied to optimize parameters of fuzzy membership functions. An initial neuro-fuzzy network can be applicable to any other link where the probe car data are available. This can be realized by the network adaptation and add/modify module. In the network adaptation module, a CBR(Case-Based Reasoning) approach is used. Various experiments show that proposed methodology has better performance for estimating link travel speed comparing to the existing method.

  • PDF

Hybrid ARQ techniques for multimedia services in Hospital Network (병원망에서 멀티미디어 서비스를 위한 H-ARQ 기법 성능 분석)

  • Kim, Sung-Hong;Suk, Kyung-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.2
    • /
    • pp.129-135
    • /
    • 2007
  • In this paper, we present hybrid ARQ techniques to improve the throughput performance in high speed packet transmission such as Internet or multimedia services in Hospital. In order to evaluate the performance of the three different types of hybrid ARQ schemes, systemized link level simulations based on WWW traffic model are considered. In this paper, we also consider the simulated performance for an average link throughput and a normalized packet delay to compare the hybrid ARQ with link adaptation scheme in GPRS.

  • PDF

Link Adaptation Method of the Block Coded Modulation for UWB-IR (무선광대역통신을 위한 블록부호화방식의 링크 적응 기법)

  • Min, Seungwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.24-35
    • /
    • 2018
  • In wireless communications environments, a link adaptation technique that selects the proper rate from among several transmission rates is adopted to cope with variations in channel status. In block coded modulation, the frame time and/or the block length can be adjusted to the channel status. A smaller frame time can cause inter-frame interference (IFI), however, a larger frame time can reduce the data rate. Therefore, frame time is the design factor decided by a tradeoff between performance and the data rate. This paper presents a method to determine the frame time based on the processing gain for the channel model, CM1~CM4, recommended by IEEE 802.15a. Also, a link adaptation technique for block coded modulation is proposed for efficient communications by varying the frame time and the block length. Through simulation, link adaptation can be carried out with a step size of 2~5 nsec in a frame time range of 14~ 50 nsec for channel models CM1~CM4.

Machine Learning-based MCS Prediction Models for Link Adaptation in Underwater Networks (수중 네트워크의 링크 적응을 위한 기계 학습 기반 MCS 예측 모델 적용 방안)

  • Byun, JungHun;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.1-7
    • /
    • 2020
  • This paper proposes a link adaptation method for Underwater Internet of Things (IoT), which reduces power consumption of sensor nodes and improves the throughput of network in underwater IoT network. Adaptive Modulation and Coding (AMC) technique is one of link adaptation methods. AMC uses the strong correlation between Signal Noise Rate (SNR) and Bit Error Rate (BER), but it is difficult to apply in underwater IoT as it is. Therefore, we propose the machine learning based AMC technique for underwater environments. The proposed Modulation Coding and Scheme (MCS) prediction model predicts transmission method to achieve target BER value in underwater channel environment. It is realistically difficult to apply the predicted transmission method in real underwater communication in reality. Thus, this paper uses the high accuracy BER prediction model to measure the performance of MCS prediction model. Consequently, the proposed AMC technique confirmed the applicability of machine learning by increase the probability of communication success.

CLSR: Cognitive Link State Routing for CR-based Tactical Ad Hoc Networks

  • Ahn, Hyochun;Kim, Jaebeom;Ko, Young-Bae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.50-67
    • /
    • 2015
  • The Cognitive Radio (CR) paradigm in tactical ad hoc networks is an important element of future military communications for network-centric warfare. This paper presents a novel Cognitive Link State Routing protocol for CR-based tactical ad hoc networks. The proposed scheme provides prompt and reliable routes for Primary User (PU) activity through procedures that incorporate two main functions: PU-aware power adaptation and channel switching. For the PU-aware power adaptation, closer multipoint relay nodes are selected to prevent network partition and ensure successful PU communication. The PU-aware channel switching is proactively conducted using control messages to switch to a new available channel based on a common channel list. Our simulation study based on the ns-3 simulator demonstrates that the proposed routing scheme delivers significantly improved performance in terms of average end-to-end delay, jitter, and packet delivery ratio.