• Title/Summary/Keyword: Lipid transfer protein

검색결과 58건 처리시간 0.039초

인체의 혈장에서 분리한 지질전이단백질이 흰쥐의 혈장 Lipoprotein 의 지질분포에 미치는 영향 (Effects of Human Plasma Lipid Transfer Protein on the Distribution of Lipids Between Lipoprotein Fractions of Rat Plasma)

  • 최영선
    • Journal of Nutrition and Health
    • /
    • 제19권5호
    • /
    • pp.296-303
    • /
    • 1986
  • 흰쥐의 lipoprotein을 제거한 혈장내의 지질전이 활성도와 지진전이를 저해하는 활성도를 측정하였다. 지질전이 활성도의 측정은 방사성 동위원소가 함유된 cholesteryl ester (CE)와 triglyceride (TG) 로 표지된 인체의 혈장 low density lipoprotein 으로부터 high high density lipoprotein(HDL) 으로 전이되는 방사성 동위원소의 양을 측정하여 계산하였다. 지질전이 저해 활성도는 정제한 인체 혈장 지질전이 단백질에 의한 지질전이를 저해하는 정도로서 측정하였다. 흰쥐의 혈장에는 지질전이 활성도가 거의 없으나, 지질전이를 저해하는 활성도는 존재하였다. 지질전이 저해정도는 측정용액내의 lipoprotein 양이 증가할수록 감소하였다. 일반적으로 흰쥐의 HDL은 인체의 HDL에 비하여 CE 의 함량은 높으며 TG의 함량은 낮다. 흰쥐의 혈장에 인체의 혈장으로부터 정제한 지질전이 단백질을 가하여 37$^{\circ}C$에 24시간 두었을 때, HDL 로부터 very low density lipoprotein (VLDL)으로 CE가 이동하여 VLDL 의 CE 함량이 4배나 증가하였다. 반면에 VLDL로부터 HDL$_2$로TG가 이동하여 $HDL_2$의 함량은 TG함량은 9배나 증가하였다. 이와같은 현상은 흰쥐의 혈장 Lipoportein이 지질전이의 기질로서의 결함은 없음을 보여준다. 따라서 지질대사에 관한 실험에서의 흰쥐에 의한 실험결과의 해석에는 인체 혈장에 비하여 혈장에는 lipoprotein사이의 중성지질의 전이나 교환이 거의 없다는 특성이 고려되어야한다.

  • PDF

감마선 조사 패턴에 따른 벼의 Lipid Transfer Protein Gene (LTP)의 발현 차이 (Differential Expression of Rice Lipid Transfer Protein Gene (LTP) Classes in Response to γ-irradiation Pattern)

  • 김선희;송미라;장덕수;강시용;김진백;김상훈;하보근;박용대;김동섭
    • 방사선산업학회지
    • /
    • 제5권1호
    • /
    • pp.47-54
    • /
    • 2011
  • In this study, we investigated to evaluate differential expression of genes encoding lipid transfer proteins (LTP) by acute and chronic gamma irradiation in rice. After acute and chronic gamma irradiation by 100 Gy and 400 Gy to rice plant, necrotic lesion was observed in the leaf blade and anthocyanin contents were increased. We isolated a total of 21 rice lipid transfer protein (LTP) genes in the TIGR database, and these genes were divided into four different groups on the basis of nucleotide sequences. The LTP genes also were classified as different four classes according to expression pattern using RT-PCR. Group A, B contained genes with increased expression and decreased expression in acute and chronic, respectively. Group C contained genes with contrasted expression pattern. Group D wasn't a regular pattern. But the specific affinity was not obtained between two grouping.

Dietary Protein Restriction Alters Lipid Metabolism and Insulin Sensitivity in Rats

  • Kang, W.;Lee, M.S.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권9호
    • /
    • pp.1274-1281
    • /
    • 2011
  • Dietary protein restriction affects lipid metabolism in rats. This study was performed to determine the effect of a low protein diet on hepatic lipid metabolism and insulin sensitivity in growing male rats. Growing rats were fed either a control 20% protein diet or an 8% low protein diet. Feeding a low protein diet for four weeks from 8 weeks of age induced a fatty liver. Expression of acetyl-CoA carboxylase, a key lipogenic enzyme, was increased in rats fed a low protein diet. Feeding a low protein diet decreased very low density lipoprotein (VLDL) secretion without statistical significance. Feeding a low protein diet down-regulated protein expression of microsomal triglyceride transfer protein, an important enzyme of VLDL secretion. Feeding a low protein diet increased serum adiponectin levels. We performed glucose tolerance test (GTT) and insulin tolerance test (ITT). Both GTT and ITT were increased in protein-restricted growing rats. Our results demonstrate that dietary protein restriction increases insulin sensitivity and that this could be due to low-protein diet-mediated metabolic adaptation. In addition, increased adiponectin levels may influences insulin sensitivity. In conclusion, dietary protein restriction induces a fatty liver. Both increased lipogenesis and decreased VLDL secretion has contributed to this metabolic changes. In addition, insulin resistance was not associated with fatty liver induced by protein restriction.

Biochemical characterization of the lipid-binding properties of a broccoli cuticular wax-associated protein, WAX9D, and its application

  • Ahn, Sun-Young;Kim, Jong-Min;Pyee, Jae-Ho;Park, Heon-Yong
    • BMB Reports
    • /
    • 제42권6호
    • /
    • pp.367-372
    • /
    • 2009
  • In this study, we showed that WAX9D, a nonspecific lipid-transfer protein found in broccoli, binds palmitate (C16) and stearate (C18) with dissociation constants of 0.56 ${\mu}M$ and 0.52 ${\mu}M$, respectively. WAX9D was fused to thioredoxin protein by genetic manipulation to enhance its solubility. The data revealed strong interaction of Trx-WAX9D with palmitate and stearate. The dissociation constants of Trx-WAX9D for palmitate and stearate were 1.1 ${\mu}M$ and 6.4 ${\mu}M$, respectively. The calculated number of binding sites for palmitate and stearate was 2.5 to 2.7, indicating that Trx-WAX9D can bind three molecules of fatty acids. Additionally, Trx-WAX9D was shown to inhibit the apoptotic effect of palmitate in endothelial cells. Our data using Trx-WAX9D provide insight into the broad spectrum of its biological applications with specific palmitate binding.

Cloning of Epidermis-specific cDNAS Encoding a Lipid Transfer Protein and an Aldehyde Decarbonylase from Senecio odorus

  • Pyee, Jaeho
    • Journal of Plant Biology
    • /
    • 제39권3호
    • /
    • pp.189-195
    • /
    • 1996
  • The major cuticular components have been shown to be synthesized in the epidermis. Therefore, cloning of epidermis-specific genes could yield information to be used to isolate and characterize the enzymes involved in the cuticle biosynthesis. A subtractive cDNA library was prepared from Senecio odorus in which epidermis-specific cDNAs were enriched. Differential screening of the library using epidermal and non-epidermal probes revealed two cDNAs. One of them designated epi425 was identified, based on the sequence homology, as a member of a new class in the LTP gene family and the other clone designated epi23 as a gene encoding an aldehyde decarbonylase. Northern blot analyses showed that epi425 and epi23 cDNAs hybridized with a transcript of about 600 and 2, 100 nucleotides, respectively, from the epidermis but not from the non-epidermal tissues. Further characterization of these clones will provide more information on the mechanism of the cuticle biosynthesis.

  • PDF

Resistance Function of Rice Lipid Transfer Protein LTP110

  • Ge, Xiaochun;Chen, Jichao;Li, Ning;Lin, Yi;Sun, Chongrong;Cao, Kaiming
    • BMB Reports
    • /
    • 제36권6호
    • /
    • pp.603-607
    • /
    • 2003
  • Abstract Plant lipid transfer proteins (LTPs) are a class of proteins whose functions are still unknown. Some are proposed to have antimicrobial activities. To understand whether LTP110, a rice LTP that we previously identified from rice leaves, plays a role in the protection function against some serious rice pathogens, we investigated the antifungal and antibacterial properties of LTP110. A cDNA sequence, encoding the mature peptide of LTP110, was cloned into the Impact-CN prokaryotic expression system. The purified protein was used for an in vitro inhibition test against rice pathogens, Pyricularia oryzae and Xanthomonas oryzae. The results showed that LTP110 inhibited the germination of Pyricularia oryzae spores, and its inhibitory activity decreased in the presence of a divalent cation. This suggests that the antifungal activity is affected by ions in the media; LTP110 only slightly inhibited the growth of Xanthomonas oryzae. However, the addition of LTP110 to cultured Chinese hamster ovarian cells did not retard growth, suggesting that the toxicity of LTP110 is only restricted to some cell types. Its antimicrobial activity is potentially due to interactions between LTP and microbe-specific structures.

AlLTPs from Allium species represent a novel class of lipid transfer proteins that are localized in endomembrane compartments

  • Yi, Seung-In;Park, Mee-Yeon;Kim, Ju-Kon;Choi, Yang Do
    • Plant Biotechnology Reports
    • /
    • 제3권3호
    • /
    • pp.213-223
    • /
    • 2009
  • Lipid transfer proteins (LTPs) are widely distributed in the plant kingdom, but their functions remain elusive. The proteins AlLTP2-4 were isolated from three related Allium plants: garlic (A. sativum L.), Welsh onion (A. fistulosum L.), and Nanking shallot (A. ascalonicum L.). These novel proteins comprise a new class of LTPs associated with the Ace-AMP1 from onion (A. cepa L.). The AlLTP genes encode proteins harboring 132 common amino acids and also share a high level of sequence identity. Protein characteristics and phylogenetic analysis suggest that LTPs could be classified into five distinct groups. The AlLTPs were clustered into the most distantly related plant LTP subfamily and appeared to be restricted to the Allium species. In particular, the number of amino acids existing between the fourth and fifth Cys residue was suggested as a conserved motif facilitating the categorization of all the LTP-related proteins in the family. Unlike other LTPs, AlLTPs harboring both the putative C-terminal propeptide and N-terminal signal peptide were predicted to be localized to cytoplasmic vacuoles. When a chimeric GFP protein fused with both N-terminal and C-terminal AlLTP2 signal peptides was expressed in rice cells, the fluorescence signal was detected in the endomembrane compartments, thereby confirming that AlLTPs are an unprecedented intracellular type of LTP. Collectively, our present data demonstrate that AlLTPs are a novel type of LTP associated with the Allium species.

Severely modified lipoprotein properties without a change in cholesteryl ester transfer protein activity in patients with acute renal failure secondary to Hantaan virus infection

  • Kim, Ji-Hoe;Park, Hyun-Ho;Choi, In-Ho;Kim, Young-Ok;Cho, Kyung-Hyun
    • BMB Reports
    • /
    • 제43권8호
    • /
    • pp.535-540
    • /
    • 2010
  • Patients with hemorrhagic fever with renal syndrome (HFRS) often exhibit altered serum lipid and lipoprotein profile during the oliguric phase of the disease. Serum lipid and lipoprotein profiles were assessed during the oliguric and recovery phases in six male patients with HFRS. In the oliguric phase of HFRS, the apolipoprotein (apo) C-III content in high-density lipoproteins (HDL) was elevated, whereas the apoA-I content was lowered. The level of expression and activity of antioxidant enzymes were severely reduced during the oliguric phase, while the cholesteryl ester transfer protein activity and protein level were unchanged between the phases. In the oliguric phase, electromobility of $HDL_2$ and $HDL_3$ was faster than in the recovery phase. Low-density lipoprotein (LDL) particle size was smaller and the distribution was less homogeneous. Patients with HFRS in the oliguric phase had severely modified lipoproteins in composition and metabolism.

Effects of Chlorpromazine·HCl on the Structural Parameters of Bovine Brain Membranes

  • Jang, Hye-Ock;Jeong, Dong-Keun;Ahn, Shin-Ho;Yoon, Chang-Dae;Jeong, Soo-Cheol;Jin, Seong-Deok;Yun, Il
    • BMB Reports
    • /
    • 제37권5호
    • /
    • pp.603-611
    • /
    • 2004
  • Fluorescence probes located in different membrane regions were used to evaluate the effects of chlorpromazine HCl on structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and lipid bilayer thickness) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. The experimental procedure was based on the selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, radiationless energy transfer from the tryptophan of membrane proteins to Py-3-Py, and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS). In this study, chlorpromazine HCl decreased the lateral mobility of Py-3-Py in a concentration dependent-manner, showed a greater ordering effect on the inner monolayer than on the outer monolayer, decreased annular lipid fluidity in a dose dependent-manner, and contracted the membrane lipid bilayer. Furthermore, the drug was found to have a clustering effect on membrane proteins.

F1064m: New Inhibitor of Cholesteryl Ester Transfer Protein (CETP), Isolated from Gliocladium virens F1064

  • Kwon, Byoung-Mog;Cho, Joung-Suk;Jeong, Tae-Sook;Kim, Sung-Uk;Son, Kwang-Hee;Kim, Young-Kook;Nam, Ji-Youn;Han, Kyu-Hoon;Bok, Song-Hae
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.65-65
    • /
    • 1995
  • Cholesteryl Ester Transfer Protein(CETP), a hydrophobic glycoprotein with molecular mass 74KDa, is a lipid transfer protein found in plasma which mediates the transfer of cholesterol ester and triglyceride between high-density lipoprotein (HDL) and other lipoproteins, therefore, it might influence HDL levels. The lipoprotein profile associated with human CETP deficiency (that are two Japanese families, high HDL and low LDL) has low atherogenic potential, raising the possibility that CETP inhibitors can be used as antiatherosclerotic drugs.

  • PDF