• Title/Summary/Keyword: Listener Tracking

Search Result 11, Processing Time 0.038 seconds

Passive and Cost Effective People Indoor Location Tracking System for Ubiquitous Healthcare (유비쿼터스 헬스케어를 위한 저비용, 수동형 실내 위치추적 시스템)

  • Chung Wan-Young;Singh Vinay Kumar;Lim Hyo-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.430-433
    • /
    • 2006
  • Wireless sensor network plays a prominent role in tracking the location of the target outdoor and indoor. This paper describes the implementation of the passive indoor location tracking system using ultrasonic and RF technologies that provides accurate location in the form of user space and position in three dimensions. Our system used a combination of RF and ultrasonic technologies to provide a location-support service to users and applicants. Ceiling-mounted beacons were spread through the building, publishing location information on an RF signal. The person carried a listener and the listener determined the location by calculating the distance from three beacons using triangulation algorithm.

  • PDF

Passive and Cost Effective People Indoor Location Tracking System for Ubiquitous Healthcare (유비쿼터스 헬스케어를 위한 저비용, 수동형 실내 위치추적 시스템)

  • Chung Wan-Young;Singh Vinay Kumar;Lim Hyo-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1119-1123
    • /
    • 2006
  • Wireless sensor network plays a prominent role in tracking the location of the target outdoor or indoor. This paper describes the implementation of the passive indoor location tracking system using ultrasonic and RF technologies that provides accurate location in the form of user space and position in three dimensions. Our system used a combination of RF and ultrasonic technologies to provide a location-support service to users and applicants. Ceiling-mounted beacons were spread through the building, publishing location information on an RF signal. The person carried a listener and the listener determined the location by calculating the distance from three beacons using triangulation algorithm.

A Space Skew and Crosstalk Cancellation Scheme Based on Indoor Spacial Information Using Self-Generating Sounds (자체발성음을 이용한 실내공간정보 획득 및 공간뒤틀림/상호간섭 제거기법)

  • Kim, Yeong-Moon;Yoo, Seung-Soo;Lee, Ki-Seung;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.246-253
    • /
    • 2010
  • In this paper, a method of removing the space skew and cross-talk cancellation is proposed where the self-generated signals from the subject are used to obtain the subject's location. In the proposed method, the good spatial sound image is maintained even when the listener moves from the sweet spot. Two major parts of the proposed method are as follows: listener position tracking using the stimuli from the subject and removal of the space skew and cross-talk signals. Listener position tracking is achieved by estimation of the time difference of arrival (TDoA). The position of the listener is then computed using the Talyer-series estimation method. The head-related transfer functions (HRTF) are used to remove the space skew and cross-talk signals, where the direction of the HRTF is given by the one estimated from the listener position tracking. The performance evaluation is carried out on the signals from the 100 subjects that are composed of the 50 female and 50 male subjects. The positioning accuracy is achieved by 70%~90%, under the condition that the mean squared positioning error is less than $0.07m^2$. The subjective listening test is also conducted where the 27 out of the 30 subjects are participated. According to the results, 70% of the subjects indicates that the overall quality of the reproduced sound from the proposed method are improved, regardless of the subject's position.

Development of a Listener Position Adaptive Real-Time Sound Reproduction System (청취자 위치 적응 실시간 사운드 재생 시스템의 개발)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.458-467
    • /
    • 2010
  • In this paper, a new audio reproduction system was developed in which the cross-talk signals would be reasonably cancelled at an arbitrary listener position. To adaptively remove the cross-talk signals according to the listener's position, a method of tracking the listener position was employed. This was achieved using the two microphones, where the listener direction was estimated using the time-delay between the two signals from the two microphones, respectively. Moreover, room reverberation effects were taken into consideration where linear prediction analysis was involved. To remove the cross-talk signals at the left-and right-ears, the paths between the sources and the ears were represented using the KEMAR head-related transfer functions (HRTFs) which were measured from the artificial dummy head. To evaluate the usefulness of the proposed listener tracking system, the performance of cross-talk cancellation was evaluated at the estimated listener positions. The performance was evaluated in terms of the channel separation ration (CSR), a -10 dB of CSR was experimentally achieved although the listener positions were more or less deviated. A real-time system was implemented using a floating-point digital signal processor (DSP). It was confirmed that the average errors of the listener direction was 5 degree and the subjects indicated that 80 % of the stimuli was perceived as the correct directions.

Three-Dimensional Location Tracking System for Automatic Landing of an Unmanned Helicopter (무인 헬기 자동 착륙을 위한 3차원 위치 추적 시스템)

  • Choo, Young-Yeol;Kang, Seong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.608-614
    • /
    • 2008
  • This paper describes a location tracking system to guide landing process of an Unmanned Helicopter(UMH) exploiting MIT Cricket nodes. For automatic landing of a UMH, a precise positioning system is indispensable. However, GPS(Global Positioning System) is inadequate for tracking the three dimensional position of a UMH because of large positioning errors. The Cricket systems use Time-Difference-of-Arrival(TDoA) method with ultrasonic and RF(Radio Frequency) signals to measure distances. They operate in passive mode in that a listener attached to a moving device receives distance signals from several beacons located at fixed points on ground. Inevitably, this passive type of implementation causes large disturbances in measuring distances between beacons and the listener due to wind blow from propeller and turbulence of UMH body. To cope with this problem, we proposed active type of implementation for positioning a UMH. In this implementation, a beacon is set up at UMH body and four listeners are located at ground area at least where the UMH will land. A pair of Ultrasonic and RF signals from the beacon arrives at several listeners to calculate the position of the UMH. The distance signals among listeners are synchronized with a counter value appended to each distance signals from the beacon.

An Objective Performance Analysis of Crosstalk Cancellation Scheme for Sound Rendering Systems Based on Listener Position Tracking (청취자 위치정보 기반 Sound Rendering 시스템 상호간섭 제거기법의 객관적 성능분석)

  • Lee, Jung-Hyuck;Kim, Yeong-Moon;Yoo, Seung-Soo;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.112-118
    • /
    • 2011
  • In this paper, we conduct an objective performance analysis of the crosstalk cancellation scheme studied in [11]. While the conventional scheme is only applicable to a listener on the optimal listenable region (sweetspot), the space skew/crosstalk cancellation (SS/CC) scheme in [11] can mitigate crosstalk regardless of the listener's position by using listener position tracking (LPT) system. The SS/CC scheme is composed of two parts: LPT-based SS and CC parts. In this paper, the SS/CC scheme is evaluated by some criteria such as follows: condition number, and the balance characteristic, its root mean square error, and running average.

Intelligent Robust Base-Station Research in Harsh Outdoor Wilderness Environments for Wildsense

  • Ahn, Junho;Mysore, Akshay;Zybko, Kati;Krumm, Caroline;Lee, Dohyeon;Kim, Dahyeon;Han, Richard;Mishra, Shivakant;Hobbs, Thompson
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.814-836
    • /
    • 2021
  • Wildlife ecologists and biologists recapture deer to collect tracking data from deer collars or wait for a drop-off of a deer collar construction that is automatically detached and disconnected. The research teams need to manage a base camp with medical trailers, helicopters, and airplanes to capture deer or wait for several months until the deer collar drops off of the deer's neck. We propose an intelligent robust base-station research with a low-cost and time saving method to obtain recording sensor data from their collars to a listener node, and readings are obtained without opening the weatherproof deer collar. We successfully designed the and implemented a robust base station system for automatically collecting data of the collars and listener motes in harsh wilderness environments. Intelligent solutions were also analyzed for improved data collections and pattern predictions with drone-based detection and tracking algorithms.

Three Dimensional Indoor Location Tracking Viewer

  • Yang, Chi-Shian;Jung, Sang-Joong;Chung, Wan-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.108-118
    • /
    • 2009
  • In this paper we develop an indoor location tracking system and its 3D tracking monitoring viewer, viz., 3D Navigation Viewer (3DNV). We focus on the integration of an indoor location tracking system with the Virtual Reality Modeling Language (VRML), to facilitate a representation of the user's spatial information in virtual indoor environments that is synchronized with the physical location environment. The developed indoor location tracking system employs beacons as active transmitters, and a listener as a passive receiver. The distance information calculated from the difference speeds of RF and Ultrasonic signals is exploited, to determine the user's physical location. This is essential in supporting third parties like doctors and caregivers in identifying the activities and status of a particular individual via 3DNV. 3DNV serves as a unified user interface for an indoor location tracking system, showing the viewpoint and position of the target in virtual indoor environments. It was implemented using VRML, to provide an actual real time visualization of the target's spatial information.

A Tracking of Head Movement for Stereophonic 3-D Sound (스테레오 입체음향을 위한 머리 움직임 추정)

  • Kim Hyun-Tae;Lee Kwang-Eui;Park Jang-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1421-1431
    • /
    • 2005
  • There are two methods in 3-D sound reproduction: a surround system, like 3.1 channel method and a binaural system using 2-channel method. The binaural system utilizes the sound localization principle of a human using two ears. Generally, a crosstalk between each channel of 2-channel loudspeaker system should be canceled to produce a natural 3-D sound. To solve this problem, it is necessary to trace a head movement. In this paper, we propose a new algorithm to correctly trace the head movement of a listener. The Proposed algorithm is based on the detection of face and eye. The face detection uses the intensity of an image and the position of eyes is detected by a mathematical morphology. When the head of the listener moves, length of borderline between face area and eyes may change. We use this information to the tracking of head movement. A computer simulation results show That head movement is effectively estimated within +10 margin of error using the proposed algorithm.

  • PDF

Smart Virtual Sound Rendering System for Digital TV (지능형 입체음향 TV)

  • Kim, Sun-Min;Kong, Dong-Geon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.939-946
    • /
    • 2008
  • 본 논문은 시청자의 위치에 최적화된 입체음향을 제공하는 TV 개발에 관한 것으로 2 개의 TV 스피커만으로 5.1 채널 스피커가 주는 입체음향 효과를 제공해준다. 기존의 Speaker Virtualizer 기술은 시청자가 특정 위치(Sweet Spot)를 벗어나면 입체음향 성능이 현저히 저하된다. 반면, 본 논문에서 제안하는 Adaptive Virtualizer 기술은 초음파가 장착된 리모콘을 사용하여 시청자의 위치를 인식하고 인식된 시청자의 위치 정보를 활용하여 청취위치에 해당하는 HRTF로부터 설계된 Filter를 Update 하고 두 스피커의 출력레벨 및 시간지연 값을 보정함으로써 최적의 입체음향을 재현한다. 본 논문에서는 실시간 구현을 위해 Speaker Virtualizer의 계산량을 최소화하는 기술을 제안하고 다양한 청취 위치에 해당하는 Filter를 설계하고 설계된 Filter를 효율적으로 Update 하는 Adaptive Virtualizer 기술을 제안한다. 또한, 초음파를 이용한 시청자 위치 인식 기술 및 전체 시스템 통합 기술을 제시한다.

  • PDF