• Title/Summary/Keyword: Livestock manure treatment

Search Result 167, Processing Time 0.026 seconds

A Study on the Characteristics of Livestock Manure Treatment Facility in Korea (국내 가축분뇨 처리시설 형태별 특성조사 분석)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Khan, Modabber Ahmed;Han, Duk-Woo;Kwag, Jung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.4
    • /
    • pp.28-44
    • /
    • 2014
  • Due to development of the national economy growth, livestock goods consumption has rapidly increased over the past 30 years. It has led livestock breeders to increase their livestock numbers. An increased number of livestock have consequently resulted in an increasing animal feces generation. According to the agricultural statistics provided by the Bureau of Statistics, livestock manure amounts to 47,235 thousand tons in 2013. To treat livestock manure, various types of treatment facilities like composting, liquid fertilization, purification, and anaerobic digestion facilities are being applied. In composting facility, there are four kinds of agitation system: escalator, paddle, screw and rotary type. In case of liquid fertilization process, there are two types of system: aeration and anoxic type. There are about 8,000 liquid fertilization facilities for treatment livestock manure in Korea. For purification of livestock manure, the treatment process is divided by three steps: Solid/Liquid separation process, Secondary purification process and advanced oxidation process. About 21 thousand tons of livestock manure was treated by anaerobic digestion facility in 2012. In every type of facility for livestock manure treatment, it is very important to choose the optimal deodorization equipment for the livestock manure treatment facility. In this study, the investigation has been carried out for six years to analyse the characteristics of livestock manure treatment facilities and related technique of Korea.

A Study on the Application of an Integrated Livestock Manure Management System Using u-ICT - Focusing on liquid fertilization - (u-ICT기술의 가축분뇨 통합관리 시스템 적용방안 연구 - 액비화 요소를 중심으로 -)

  • Koo, J.H.;Jung, T.W.;Jo, J.H.;Lee, S.R.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.7-12
    • /
    • 2012
  • To prevent the inappropriate treatment of livestock manure and induce the correct circulation of them into farmland, systematic monitoring and management by the treatment and circulation stage of livestock manure are required. The purpose of this study was to apply ubiquitous information communictation technology (u-ICT) to a livestock waste management system for better treatment by utilizing ubiquitous computing technology in the livestock sector. Elements and levels of applicable u-ICT technology for efficient livestock manure management were derived by analyzing previous researches. In addition, a conceptual diagram of an integrated management system was suggested by analyzing the existing liquid fertilization process.

A Study on Comprehensive Environmental Information System for Livestock Manure Management in Korea (가축분뇨 관리를 위한 통합환경정보시스템 발전방안)

  • Jeong, Dong-Hwan;Kim, Yongseok;Shin, Jinsoo;Rhew, Doughee;Cho, Hong-Lae;Lee, Taehwan
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.183-194
    • /
    • 2013
  • The Ministry of Environment, Ministry of Agriculture, Fishery and Forestry, and Ministry of Construction, Transportation and Maritime Affairs are in charge of livestock manure management. There are national statistics regarding the livestock industry such as the National Pollution Source Survey, Livestock Statistic Survey, and Livestock-breeding Trend Survey. The current statistical data are focused on the scale of livestock breeding and the production of livestock manure using these data, but it is difficult to establish database due to lack of information. In order to plan relevant policies including management of livestock manure, the government established database systems such as the integrated information system of livestock manure, the integrated system of national infectious animal-disease prevention, and the Sae-ol public administrative system. We have tried to suggest improvements for the comprehensive environmental information system of livestock manure management by detecting problems in each level of the livestock manure life-cycle, making use of the existing systems, and considering the electronic transfer system of livestock manure. The services and functions of this comprehensive system include information of livestock farmers, the production, collection, transportation, and treatment of livestock manure, the area of agricultural land used for livestock manure, the report of approval and results on livestock manure products, management of statistical information, management of civil affairs, and relevant mobile application services. The system is made up of three processes: first, establishment of GIS-based management database of livestock manure; second, establishment of a history management system for livestock manure transactions; and third, development of a water quality assessment system.

A study on the improvement measures of livestock manure management and organic fertilizer use in Nonsan area (가축분뇨 관리 및 퇴비·액비 이용에 대한 개선방안 고찰 - 논산지역을 중심으로 -)

  • Jeong, Dong-Hwan;Shin, Jinsoo;Lee, Chulgu;Yu, Soonju;Kim, Yongseok
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.345-359
    • /
    • 2013
  • The Ministry of Environment established a plan for advancement of livestock manure management in July 2011 and finalized the "Comprehensive Measures for Advancement of Livestock Manure Management" in May 2012 complementing and strengthening the plan. In this process, it was necessary to investigate the status of discharge of livestock manure and its environmental impact, for example on rivers, groundwater, arable outflow water and soil. We investigated types of livestock husbandry, discharge of livestock manure, and production and use of organic fertilizers and presented the improvement measures of livestock manure management and organic fertilizer use. First, it is necessary to come up with measures to calculate appropriate density and numbers of livestock animals and prevent overcrowded breeding. Second, as many of the private livestock manure treatment facilities are out-dated and their long-term aerated reaction tanks are not regularly managed, it is necessary to find ways to improve those facilities through inspection and diagnosis. In addition, since existing public treatment facilities are designed to add clean water to belt filter press, additional water is needed. Therefore, it is necessary to improve belt filter press in order to decrease the extra water. Finally, although large-scale organic fertilizer plants and resources recycling centers produce good organic (liquid) fertilizers with proper components, it is necessary to establish standards for maturity of liquid fertilizers in order to facilitate efforts to turn livestock manure into resources.

Total assessment for phosphorus input load of public wastewater and livestock manure treatment facilities in Korea (우리나라 공공하수처리시설 및 가축분뇨공공 처리시설의 인(P) 유입부하량에 대한 총량평가)

  • Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.325-335
    • /
    • 2018
  • The annual total phosphorus load caused by public wastewater, nightsoil and livestock manure treatment facilities in Korea has been examined macroscopically. Annual domestic average phosphorus (P) inflows through the income of phosphate rock for the last five years (2012 - 2016) were analyzed as 76,598 tons/year. As of the year 2015, the total loadings of phosphorus attributed to public wastewater treatment facilities, nightsoil treatment facilities and livestock wastewater were estimated as 30,269 tons/year, 1,909 tons/year and 18,138 tons/year, respectively. Considering the amount of phosphorus imports, the annual phosphorus load from wastewater, livestock wastewater and excretions is equivalent to 39.5%, 23.7%, 2.5% and totally 65.7%(39.5% + 23.7% + 2.5%). Therefore, the introduction of phosphorus recovery and recycling processes for the public wastewater and livestock manure treatment facilities has been found to be effective because it could reduce the import amount of phosphate rock by up to 60% or more.

Automated Verification of Livestock Manure Transfer Management System Handover Document using Gradient Boosting (Gradient Boosting을 이용한 가축분뇨 인계관리시스템 인계서 자동 검증)

  • Jonghwi Hwang;Hwakyung Kim;Jaehak Ryu;Taeho Kim;Yongtae Shin
    • Journal of Information Technology Services
    • /
    • v.22 no.4
    • /
    • pp.97-110
    • /
    • 2023
  • In this study, we propose a technique to automatically generate transfer documents using sensor data from livestock manure transfer systems. The research involves analyzing sensor data and applying machine learning techniques to derive optimized outcomes for livestock manure transfer documents. By comparing and contrasting with existing documents, we present a method for automatic document generation. Specifically, we propose the utilization of Gradient Boosting, a machine learning algorithm. The objective of this research is to enhance the efficiency of livestock manure and liquid byproduct management. Currently, stakeholders including producers, transporters, and processors manually input data into the livestock manure transfer management system during the disposal of manure and liquid byproducts. This manual process consumes additional labor, leads to data inconsistency, and complicates the management of distribution and treatment. Therefore, the aim of this study is to leverage data to automatically generate transfer documents, thereby increasing the efficiency of livestock manure and liquid byproduct management. By utilizing sensor data from livestock manure and liquid byproduct transport vehicles and employing machine learning algorithms, we establish a system that automates the validation of transfer documents, reducing the burden on producers, transporters, and processors. This efficient management system is anticipated to create a transparent environment for the distribution and treatment of livestock manure and liquid byproducts.

Combustion Characteristics of Cow Manure Pellet as a Solid Fuel Source (고체연료원으로서의 우분 펠릿 연소특성)

  • Jeong, Kwang-Hwa;Lee, Dong-jun;Lee, Dong-Hyun;Lee, Sung-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.31-40
    • /
    • 2019
  • In Korea, 51,013 thousand tons of livestock manure was generated in 2018. A total of 46,530 thousand tons, which is 91.2% of the total amount of livestock manure generated, was treated by composting(40,647 thousand tons) or liquid fertilization(5,884 thousand tons) method. At present, the policy of livestock manure treatment in Korea is to make livestock manure into organic fertilizer(compost, liquid fertilizer) and then to applicate it on agricultural land. And this policy is very effective in terms of livestock manure treatment and nutrient recycling. However, considering the steadily declining farmland area for decades, the use of livestock manure compost could be limited in the future. There is also concern that local nutrient overloading, nutrient management regulation, and restrictions on the number of livestock may become serious problem for livestock manure treatment. In addition, there are some opinions that nutrient derived from livestock manure may flow into tributaries of major dams. In recent years, there has been a suspicion that fine dust may be generated from livestock manure compost. In recent years, the use of livestock manure fertilizer has been rapidly increasing, there is a growing demand of the development of new technologies for livestock manure treatment. Especially, cow excretes a larger amount of manure than other livestock, so that the efficiency of development of new technology for cow manure treatment will be high. Therefore, in this study, the combustion characteristics of cow manure pellet were investigated in order to analyzed whether cow manure could be used as source of solid fuel. During the combustion test, the weight loss of the cow manure pellet began to increase when the temperature of the combustion chamber reached $300^{\circ}C$. The ratio of $H_2$, $CH_4$, CO in the pyrolysis gas produced in the pyrolysis process of cow manure pellet were 6.65~11.62%, 0.58~1.54 and 11.47~14.07%, respectively.

Estimation of Greenhouse Gas (GHG) Emissions from Livestock Agriculture in Korea (2011년도 축산부문 온실가스 인벤토리 산정 연구)

  • Yang, Seung-Hak;Choi, Dong-Yoon;Cho, Sung-Back;Hwang, Ok-Hwa;Park, Kyu-Hyun
    • Journal of Animal Environmental Science
    • /
    • v.20 no.4
    • /
    • pp.139-146
    • /
    • 2014
  • This research was conducted to examine the temporal methane ($CH_4$) and nitrous oxide ($N_2O$) emission trends in livestock agriculture from year 1990 to 2011 with Tier 1 national greenhouse gas (GHG) inventory reporting method, which was related to efforts of decreasing GHG emissions and to achievement of voluntary GHG mitigation target. Methane emissions from enteric fermentation were calculated with default $CH_4$ emission factors of IPCC. Methane and $N_2O$ emissions from manure treatment processes were calculated with Tier 1 and mixture of Tier 1 and Tier 2 including $N_2O$ emission factors of manure treatment systems and nitrogen excretion rate of livestock, respectively. According to 2013 National GHG Inventory Monitoring, Reporting, and Verification report, GHG emission fluctuations from enteric fermentation and manure treatment processes were similarto livestock head fluctuation. GHG emissions from enteric fermentation were mainly affected by beef cattle including Hanwoo, while manure treatment processes were affected by various livestock.

A Study on VS Removal Efficiency and Methane Emission in Combined Anaerobic Digestion of Livestock Manure and Food Waste (가축분뇨 및 음식물쓰레기의 혐기성 소화 병합처리 시 VS 제거효율과 메탄 발생량의 관한 연구)

  • Choi, Young-Ik;Ji, Hyeon-Jo;Jung, Jin-Hee;Jung, Byung-Gil;Kim, Jung-Geon
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.737-742
    • /
    • 2018
  • Livestock manure treatments have become a more serious problem because massive environmental pollutions such as green and red tides caused by non-point pollution sources from livestock manures have emerged as a serious social issue. In addition, more food wastes are being produced due to population growth and increased income level. Since the London Convention has banned the ocean dumping of wastes, some other waste treatment methods for land disposal had to be developed and applied. At the same time, researches have been conducted to develop alternative energy sources from various types of wastes. As a result, anaerobic digestion as a waste treatment method has become an attractive solution. In this study has three objectives: first, to identify the physical properties of the mixture of livestock wastewater and food waste when combining food waste treatment with the conventional livestock manure treatment based on anaerobic mesophilic digestion; second, to find the ideal ratio of waste mixture that could maximize the collection efficiency of methane ($CH_4$) from the anaerobic digestion process; and third, to promote $CH_4$ production by comparing the biodegradability. As a result of comparing the reactors R1, R2, and R3, each containing a mixture of food waste and livestock manure at the ratio of 5:5, 7:3, and 3:7, respectively, R2 showed the optimum treatment efficiencies for the removal of Total Solids (TS) and Volatile Solids (VS), $CH_4$ production, and biodegradability.

Biogas Production by Anaerobic Co-digestion of Livestock Manure Slurry with Fruits Pomace (가축분뇨와 과실착즙박의 혼합 혐기소화에 따른 바이오가스 생산)

  • Byeon, Jieun;Ryoo, Jongwon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.5-13
    • /
    • 2019
  • This study is conducted to investigate the effects of anaerobic treatments of swine manure slurry alone and combination of livestock manure slurry and fruit pomace on biogas production. Anaerobic co-digestion was evaluated in mesophilic tank reactors for 96 day-incubation period. The organic matter loading of anaerobic digestion was 1 kg of volatile solids(VS) per $1m^3{\cdot}day$. The highest methane production was achieved from the combination of swine manure slury and mandarin pomace(70:30) treatment, whereas the lowest daily and cumulative methane yields was observed in swine manure slurry alone treatment. More than two-fold increase in bio-gas and methane production was obtained by combination of livestock manure slurry and mandarin pomace treatment, compared to the swine manure slurry alone treatment. The co-digestion of livestock manure and fruits pomace has advantages to enhance the production of methane gas, compared to digestion of swine manure slurry alone.