• Title/Summary/Keyword: Ljung-Box test statistic

Search Result 5, Processing Time 0.019 seconds

Ljung-Box Test in Unit Root AR-ARCH Model

  • Kim, Eunhee;Ha, Jeongcheol;Jeon, Youngsook;Lee, Sangyeol
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.323-327
    • /
    • 2004
  • In this paper, we investigate the limiting distribution of the Ljung-Box test statistic in the unit root AR models with ARCH errors. We show that the limiting distribution is approximately chi-square distribution with the degrees of freedom only depending on the number of autocorrelation lags appearing in the test. Some simulation results are provided for illustration.

Model Checking for Time-Series Count Data

  • Lee, Sung-Im
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.359-364
    • /
    • 2005
  • This paper considers a specification test of conditional Poisson regression model for time series count data. Although conditional models for count data have received attention and proposed in several ways, few studies focused on checking its adequacy. Motivated by the test of martingale difference assumption, a specification test via Ljung-Box statistic is proposed in the conditional model of the time series count data. In order to illustrate the performance of Ljung- Box test, simulation results will be provided.

Estimation of BDI Volatility: Leverage GARCH Models (BDI의 변동성 추정: 레버리지 GARCH 모형을 중심으로)

  • Mo, Soo-Won;Lee, Kwang-Bae
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.3
    • /
    • pp.1-14
    • /
    • 2014
  • This paper aims at measuring how new information is incorporated into volatility estimates. Various GARCH models are compared and estimated with daily BDI(Baltic Dry Index) data. While most researchers agree that volatility is predictable, they differ on how this volatility predictability should be modelled. This study, hence, introduces the asymmetric or leverage volatility models, in which good news and bad news have different predictability for future. We provide the systematic comparison of volatility models focusing on the asymmetric effect of news on volatility. Specifically, three diagnostic tests are provided: the sign bias test, the negative size bias test, and the positive size bias test. From the Ljung-Box test statistic for twelfth-order serial correlation for the level we do not find any significant serial correlation in the unpredictable BDI. The coefficients of skewness and kurtosis both indicate that the unpredictable BDI has a distribution which is skewed to the left and significantly flat tailed. Furthermore, the Ljung-Box test statistic for twelfth-order serial correlations in the squares strongly suggests the presence of time-varying volatility. The sign bias test, the negative size bias test, and the positive size bias test strongly indicate that large positive(negative) BDI shocks cause more volatility than small ones. This paper, also, shows that three leverage models have problems in capturing the correct impact of news on volatility and that negative shocks do not cause higher volatility than positive shocks. Specifically, the GARCH model successfully reveals the shape of the news impact curve and is a useful approach to modeling conditional heteroscedasticity of daily BDI.

A Study on Price Volatility and Properties of Time-series for the Tangerine Price in Jeju (제주지역 감귤가격의 시계열적 특성 및 가격변동성에 관한 연구)

  • Ko, Bong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.212-217
    • /
    • 2020
  • The purpose of this study was to analyze the volatility and properties of a time series for tangerine prices in Jeju using the GARCH model of Bollerslev(1986). First, it was found that the time series for the rate of change in tangerine prices had a thicker tail rather than a normal distribution. At a significance level of 1%, the Jarque-Bera statistic led to a rejection of the null hypothesis that the distribution of the time series for the rate of change in tangerine prices is normally distributed. Second, the correlation between the time series was high based on the Ljung-Box Q statistic, which was statistically verified through the ARCH-LM test. Third, the results of the GARCH(1,1) model estimation showed statistically significant results at a significance level of 1%, except for the constant of the mean equation. The persistence parameter value of the variance equation was estimated to be close to 1, which means that there is a high possibility that a similar level of volatility will be present in the future. Finally, it is expected that the results of this study can be used as basic data to optimize the government's tangerine supply and demand control policy.

Volatility of Export Volume and Export Value of Gwangyang Port (광양항의 수출물동량과 수출액의 변동성)

  • Mo, Soo-Won;Lee, Kwang-Bae
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • The standard GARCH model imposing symmetry on the conditional variance, tends to fail in capturing some important features of the data. This paper, hence, introduces the models capturing asymmetric effect. They are the EGARCH model and the GJR model. We provide the systematic comparison of volatility models focusing on the asymmetric effect of news on volatility. Specifically, three diagnostic tests are provided: the sign bias test, the negative size bias test, and the positive size bias test. This paper shows that there is significant evidence of GARCH-type process in the data, as shown by the test for the Ljung-Box Q statistic on the squared residual data. The estimated unconditional density function for squared residual is clearly skewed to the left and markedly leptokurtic when compared with the standard normal distribution. The observation of volatility clustering is also clearly reinforced by the plot of the squared value of residuals of export volume and values. The unconditional variance of both export volumes and export value indicates that large shocks of either sign tend to be followed by large shocks, and small shocks of either sign tend to follow small shocks. The estimated export volume news impact curve for the GARCH also suggests that $h_t$ is overestimated for large negative and positive shocks. The conditional variance equation of the GARCH model for export volumes contains two parameters ${\alpha}$ and ${\beta}$ that are insignificant, indicating that the GARCH model is a poor characterization of the conditional variance of export volumes. The conditional variance equation of the EGARCH model for export value, however, shows a positive sign of parameter ${\delta}$, which is contrary to our expectation, while the GJR model exhibits that parameters ${\alpha}$ and ${\beta}$ are insignificant, and ${\delta}$ is marginally significant. That indicates that the asymmetric volatility models are poor characterization of the conditional variance of export value. It is concluded that the asymmetric EGARCH and GJR model are appropriate in explaining the volatility of export volume, while the symmetric standard GARCH model is good for capturing the volatility.