• Title/Summary/Keyword: Load Controlled Axial Force Test

Search Result 5, Processing Time 0.021 seconds

Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads

  • Park, Jai Woo;Hong, Young Kyun;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.187-205
    • /
    • 2010
  • The existing CFT columns present the deterioration in confining effect after the yield of steel tube, local buckling and the deterioration in load capacity. If lateral load such as earthquake load is applied to CFT columns, strong shearing force and moment are generated at the lower part of the columns and local buckling appears at the column. In this study, axial compression test and beam-column test were conducted for existing CFT square column specimens and those reinforced with carbon fiber sheets (CFS). The variables for axial compression test were width-thickness ratio and the number of CFS layers and those for beamcolumn test were concrete strength and the number of CFS layers. The results of the compression test showed that local buckling was delayed and maximum load capacity improved slightly as the number of layers increased. The specimens' ductility capacity improved due to the additional confinement by carbon fiber sheets which delayed local buckling. In the beam-column test, maximum load capacity improved slightly as the number of CFS layers increased. However, ductility capacity improved greatly as the increased number of CFS layers delayed the local buckling at the lower part of the columns. It was observed that the CFT structure reinforced with carbon fiber sheets controlled the local buckling at columns and thus improved seismic performance. Consequently, it was deduced that the confinement of CFT columns by carbon fiber sheets suggested in this study would be widely used for reinforcing CFT columns.

A Study on the Fatigue Strength Reduction Factor under the High Cycle Bending Fatigue (고사이클 굽힘 피로에서의 피로강도 감소계수에 관한 연구)

  • Pyo, Dong-Keun
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 1992
  • 기구나 구조물의 피로수명은 노치에서의 피로균열 방생수명에 의하여 지배되기때문에 노치로 인한 피로강도감소계수 $K_f$는 피로설계상 대단히 중요한 인자이다. 노치 선단(Notch root)에서의 피로균열발생명수 N$_c$를 기준으로하면 탄성응력집중계수 $K_t$가 10 정도까지 $K_f$$K_t$간에는 거의 직선적인 관계가 있음이 이다- 고에 의하여 명석해졌으나 이는 인장,압축의 축력이 작용하였을 때이며 따라서 기구나 구조부재는 축력외에도 굽힘 피로 하중이 작용하였을때도 많으므로 본 연구에서는 굽힘 피로 하중을 받았을때도 있다. -고의 결론이 적용되는지는 검시코져 본 연구를 실시하였다.

  • PDF

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

Performance of Repaired Structural Walls with Different Shear Span Ratios (전단스팬비가 다른 보수된 벽체의 성능평가)

  • Han, Sang-Whan;Oh, Chang-Hak;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • The purpose of this study is to evaluate the capacities of repaired structural walls with different shear span ratios(1, 2, 3). Experimental tests were carried out. In this study three isolated large-scale wall specimens were made. The original wall specimens were tested until the drift reaches more than 3%. The region of the damaged specimen with the crack larger than 0.2 mm is replaced by new concrete. Also, severly distorted reinforcements were also replaced by new reinforcements. The crack smaller than 0.2 mm was cured by epoxy resin. Because of the space limitation of the laboratory the dimensions of all walls are the same. The shear-span ratio was controlled by the combination of axial and lateral force using the special test setting. All specimens were tested using the incremental quasi static cyclic load until failure occurs. Test results show that strength of repaired walls was almost equivalent to that of original walls. However, deformation capacities of repaired wall specimens are inferior to the original wall specimens.

Behavior of Model Pile Embedded in Expansive Soil with Magnesia Oxide-Based Refractories (MgO계 내화물이 함유된 팽창성 지반에서의 모형말뚝 거동 분석)

  • Yoon, Boyoung;Kim, Mintae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.33-40
    • /
    • 2023
  • This study explores the performance of pile foundations in highly expansive soil, incorporating magnesium oxide-based refractory materials. A controlled model chamber, housing a fixed pile, was utilized to induce ground expansion through fused magnesia (FM). The investigation focused on measuring the vertical displacement of FM-sand mixtures and the axial load on the pile in relation to depth and time. The study varied the amount of FM content (FMc) at 30%, 50%, and 70%. The upward movement exhibited an augmentation with increasing FMc, tapering off with depth as accumulation progressed toward the mixture surface. Compression and tensile forces were both evident along the pile for FMc at 30% and 50%, while only a tensile force was observed at an FMc of 70%. These results offer valuable insights for the analysis of pile behavior within FM-sand mixtures.