• Title/Summary/Keyword: Load resistance

Search Result 2,402, Processing Time 0.028 seconds

Estimation of load and resistance factors based on the fourth moment method

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Ang, Alfredo H.S.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.19-36
    • /
    • 2010
  • The load and resistance factors are generally obtained using the First Order Reliability Method (FORM), in which the design point should be determined and derivative-based iterations have to be used. In this paper, a simple method for estimating the load and resistance factors using the first four moments of the basic random variables is proposed and a simple formula for the target mean resistance is also proposed to avoid iteration computation. Unlike the currently used method, the load and resistance factors can be determined using the proposed method even when the probability density functions (PDFs) of the basic random variables are not available. Moreover, the proposed method does not need either the iterative computation of derivatives or any design points. Thus, the present method provides a more convenient and effective way to estimate the load and resistance factors in practical engineering. Numerical examples are presented to demonstrate the advantages of the proposed fourth moment method for determining the load and resistance factors.

Load & Resistance Factors Calibration for Limit State Design of Non-Perforated Caisson Breakwater (직립무공케이슨방파제 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.351-355
    • /
    • 2019
  • Load resistance factors for the limit state design of vertical caisson breakwaters are presented. Reliability analysis of 16 breakwaters in nationwide ports was conducted to calculate the partial safety factors and they were converted into load and resistance factors. The final load resistance factor was calibrated by applying the optimization technique to the individually calculated load resistance factors. Finally, the breakwater was redesigned using the optimal load resistance factor and verified whether the target level was met. The load resistance factor according to the change of the target reliability level is presented to facilitate the limit state design of breakwater.

Bearing Capacity and Control Method of Driven Piles (기성말뚝의 지지력 거동해석과 시공관리방안)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.249-258
    • /
    • 1999
  • Dynamic load and static load tests are performed on steel pipe piles and concrete piles at five construction sites in highway to compare the difference of load bearing mechanisms. At each site, one steel pile is instrumented with electric strain gages and dynamic tests are performed on the pile during installation. Damages of strain gages due to the installation are checked and static test is performed upon the same pile after two or seven days as well. It shows that load transfer from side friction to base resistance behaves somewhat differently according to the results of load-settlement analysis obtained from PDA and static load test. Initial elastic stage of load settlement curves of two load tests is almost similar. But after the yielding point, dynamic resistance of pile behaves more stiffer than static resistance, thus, dynamic load test result might overestimate the real pile capacity compared with static result. Analysis of gage readings shows that unit skin friction increases exponentially with depth. The skin friction is mobilized at the 1∼2m above the pile tip and contributes to the considerable side resistance. Comparison of side and base resistances between the measured value and the calculated value by Meyerhof's bearing capacity equation using SPT N value shows that the calculated base resistance is higher than the measured. Therefore, contribution of side resistance to total capacity shouldn't be ignored or underestimated. Finally, based upon the overall test results, a construction control procedure is suggested.

  • PDF

Performance of Rock-socketed Drilled Shafts in Deep Soft Clay Deposits

  • Kim, Myung-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.409-429
    • /
    • 2006
  • In designing rock-socketed drilled shaft, bearing capacity evaluation is very important because the maximum values of base and side resistance are not generally mobilized at the same value of displacement, FHWA and AASHTO code suggest different ultimate bearing capacity formular according to rock type and shaft settlement. In domestic code suggest base resistance and side resistance can be added on condition that after confirming the result of field load test with axial load transfer test. This paper shows that static load test and hi-directional load test result analysis of deep rock-socketed drilled shaft in three different sites. Load-settlement curve, t-z, and q-w curve in rock-socketed part were calculated and compared. t-z curve in weathered and soft rock showed no deflection softening behavior in pretty large strain (about 2-3% of diameter). Ultimate resistance could be the summation of side resistance and base resistance in rock-socketed drilled shaft in domestic sites.

  • PDF

Reliability analysis and evaluation of LRFD resistance factors for CPT-based design of driven piles

  • Lee, Junhwan;Kim, Minki;Lee, Seung-Hwan
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-34
    • /
    • 2009
  • There has been growing agreement that geotechnical reliability-based design (RBD) is necessary for establishing more advanced and integrated design system. In this study, resistance factors for LRFD pile design using CPT results were investigated for axially loaded driven piles. In order to address variability in design methodology, different CPT-based methods and load-settlement criteria, popular in practice, were selected and used for evaluation of resistance factors. A total of 32 data sets from 13 test sites were collected from the literature. In order to maintain the statistical consistency of the data sets, the characteristic pile load capacity was introduced in reliability analysis and evaluation of resistance factors. It was found that values of resistance factors considerably differ for different design methods, load-settlement criteria, and load capacity components. For the total resistance, resistance factors for LCPC method were higher than others, while those for Aoki-Velloso's and Philipponnat's methods were in similar ranges. In respect to load-settlement criteria, 0.1B and Chin's criteria produced higher resistance factors than DeBeer's and Davisson's criteria. Resistance factors for the base and shaft resistances were also presented and analyzed.

Load-settlement curve combining base and shaft resistance considering curing of cement paste

  • Seo, Mi Jeong;Park, Jong-Bae;Lee, Dongsoo;Lee, Jong-Sub
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.407-420
    • /
    • 2022
  • Embedded piles, which are typically used in Korea, are precast piles inserted into prebored ground with cement paste. Dynamic pile tests tend to underestimate the bearing capacity of embedded piles because of the undeveloped shaft resistance prior to the curing of the cement paste and the insufficient energy transferred after the curing. In this study, a resistance combination method using the base resistance before the cement paste is cured and the shaft resistance after the cement paste is cured is proposed to obtain a combined load-settlement curve from dynamic pile tests. Two pairs of embedded piles with diameters of 600 and 500 mm are installed. Each pair comprises one pile for the dynamic pile test and another pile for the static load test. The shape of the load-settlement curve obtained using the proposed method is similar to that obtained from the static load test. Thus, the resistances evaluated using the proposed method at selected settlements are similar to those obtained from the static load test. This study shows that the resistance combination method may be used effectively in dynamic pile tests to accurately evaluate the bearing capacity of embedded piles.

Determination of Resistance Factors for Drilled Shaft Based on Load Test (현장타설말뚝의 주면지지력 저항계수 산정)

  • Kim, Seok-Jung;Jung, Sung-Jun;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.427-434
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions, by comparison most of bedrocks in Korea are weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety(FOS) were selected as 3.0, the target reliability index($\beta_c$) were evaluated about 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factor for dead load and live load are evaluated approximately 1.25 and 1.75 respectively. However, when the target reliability are considered as 3.0, the resistance factors are evaluated as approximately 50% of results when the target reliability index were 2.0.

  • PDF

Safety Evaluation of Fire Resistant Extruded Panel for Partition Wall System

  • Choi, Duck-Jin;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.586-595
    • /
    • 2012
  • While the extruded cement panel has many advantages compared to drywall, it has limited applicability in buildings due to its low fire resistance. However, an extruded panel in which the fire resistance has been dramatically enhanced through the addition of a-hemihydrate gypsum is expected to become widely applied as a partition wall or interior material for buildings. To ensure its applicability, certain safety requirements for use, such as the leaning load by residents, the impact by indoor articles, and the fire, need to be taken into consideration. The purpose of this study is to review the impact load resistance, horizontal load resistance, and fire resistance as required safety properties for the partition wall and interior materials of the extruded panel that includes a-hemihydrate gypsum. The results of this study show that the impact load resistance of the extruded panel that includes a-hemihydrate gypsum achieves SD grade for industrial buildings, and the horizontal impact load resistance achieves HD grade for public buildings. In addition, it provides fire-resistance for approximately 7 minutes longer than the existing extruded cement panel. Based on this result, it is confirmed the extruded panel incorporating a-hemihydrate gypsum has adequate safety properties for use as partition wall or interior material.

Reliability Updates of Driven Piles Using Proof Pile Load Test Results (검증용 정재하시험 자료를 이용한 항타강관말뚝의 신뢰성 평가)

  • Park, Jae-Hyun;Kim, Dong-Wook;Kwak, Ki-Seok;Chung, Moon-Kyung;Kim, Jun-Young;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.324-337
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was constructed based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability index of driven steel pile piles by adding more pile load test results, even not conducted to failure, into the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. Reliability analyses were performed using the updated distribution of pile resistance ratio and the total load distribution using First-order Reliability Method (FORM). The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian update are most effective when limited data are available for reliability analysis or resistance factors calibration.

  • PDF

Reliability analysis of circular tunnel with consideration of the strength limit state

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.879-888
    • /
    • 2018
  • Probability-based design codes have been developed to sufficiently confirm the safety level of structures. One of the most acceptable probability-based approaches is Load Resistance Factor Design (LRFD), which measures the safety level of the structures in terms of the reliability index. The main contribution of this paper is to calibrate the load and resistance factors of the design code for tunnels. The load and resistance factors are calculated using the available statistical models and probability-based procedures. The major steps include selection of representative structures, consideration of the limit state functions, calculation of reliability for the selected structures, selection of the target reliability index and calculation of load factors and resistance factors. The load and resistance models are reviewed. Statistical models of resistance (load carrying capacity) are summarized for strength limit state in bending, shear and compression. The reliability indices are calculated for several segments of a selected circular tunnel designed according to the tunnel manual report (Tunnel Manual). The novelty of this paper is the selection of the target reliability. In doing so, the uniform spectrum of reliability indices is proposed based on the probability paper. The final recommendation is proposed based on the closeness to the target reliability index.