• Title/Summary/Keyword: Local Stress Analysis

Search Result 599, Processing Time 0.023 seconds

Reference Stress Based Stress Analysis for Local Creep Rupture of a T-pipe (참조응력법에 입각한 T-배관 국부 크리프 파단 평가를 위한 응력해석 사례연구)

  • Shin Kyu-In;Yoon Kee-Bong;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.873-879
    • /
    • 2006
  • To investigate applicability of the reference stress approach as simplified inelastic stress analysis to estimate local creep rupture, detailed finite element stress analyses of a T-piece pipe with different inner pressure and system loading levels are performed. The reference stresses are obtained from the finite element (FE) limit analysis based on elastic-perfectly-plastic materials, from which the local reference stress for creep rupture is determined from R5. The resulting inelastic stresses are compared with elastic stresses resulting from linear elastic FE calculations. Furthermore they are also compared with the stresses from full elastic-creep FE analyses. It shows that the stresses estimated from the reference stress approach compare well with those from full elastic-creep FE analysis, which are significantly lower than the elastic stress results. Considering time and efforts for full inelastic creep analysis of structures, the reference stress approach is shown to be a powerful tool for creep rupture estimates and also to reduce conservatism of elastic stress analysis significantly.

Three-dimensional finite element modeling of a long-span cable-stayed bridge for local stress analysis

  • Lertsima, Chartree;Chaisomphob, Taweep;Yamaguchi, Eiki
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.113-124
    • /
    • 2004
  • The information on local stress acting in a bridge is required in many occasions such as fatigue assessment. The analysis by beam elements cannot yield this class of information adequately, while the finite element modeling of an entire long-span bridge by shell elements is impractical. In the present study, the hybrid modeling is tried out: only part of a bridge in which the point of interest is located is discretized by shell elements and the remaining part is modeled by beam elements. By solving a simple box girder problem, the effectiveness of this approach is discussed. This technique is then applied to the Rama IX Bridge for local stress evaluation. The numerical results compare very well with the results of a full-scale static loading test. The present research thus offers a practical yet accurate technique for the stress analysis of a long-span cable-stayed bridge.

A Study on the Development and Validation of the Local Clinic Medical Doctor Role Stress Scale: Focusing on Local Clinic Medical Doctor (개원의 역할스트레스 척도 개발 및 타당화 연구: 1차 의료기관 개원의를 중심으로)

  • Song, Young-Ah;Kim, Ji-Hyeon
    • The Korean Journal of Health Service Management
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2018
  • Objectives : This study developed and validated the local clinic Medical Doctor Role Stress Scale(MDRS). Methods : The interviews were conducted with 12 local clinic medical doctors to develop final preliminary questions. The scale was developed using statistical item analysis, exploratory and confirmatory factor analysis surveys with local clinic medical doctors in Seoul, Busan, Daejeon, and Gyeonggi province. Results : The MDRS developed in this study consisted of 14 items and three factors. The factors were role conflict, role ambiguity and role overload. The three factors explained 56.71% of the total variance, and the internal consistency of this scale was .90. The internal consistency for each factor was .81 ~ .90. Confirmatory factor analysis through a separate sampling met the fit criteria (CFI = .941, TLI = .927, RMSEA = .079, SRMR = .069). Conclusions : The results indicate that this scale is a reliable instrument for assessing local clinic medical doctor role stress.

A Study on Weld Residual Stress Relaxation by furnaced and local PWHT Procedures (노내 및 국부 후열처리에 의한 잔류응력 완화 거동 평가)

  • Lee, Seung-Gun;Kim, Jong-Sung;Jin, Tae-Eun;Dong, P.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.250-255
    • /
    • 2004
  • In this paper, we established baseline information and insight on residual stress relief mechanism associated with furnaced and local PWHT(post weld heat treatment) operation. Based on FEM analysis results, we suggested that furnaced PWHT stress relief mechanism was based on creep relaxation and local PWHT stress relief mechanism involved complicated interactions between plasticity and creep. In case of furnaced PWHT, significant stress relaxation was occurred in the early stage of PWHT. In case of local PWHT, stress relaxation magnitude was increased as PWHT time increased. Finally, We have proposed that detailed furnaced and local PWHT procedure, and qualification criteria to support current codes of practices.

  • PDF

Distortional and local buckling of steel-concrete composite box-beam

  • Jiang, Lizhong;Qi, Jingjing;Scanlon, Andrew;Sun, Linlin
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.243-265
    • /
    • 2013
  • Distortional and local buckling are important factors that influences the bearing capacity of steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. The critical bending moment calculation formula of distortional buckling is established. In addition, mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the proposed models.

Stress Analysis of Truss Connection subjected to Moving Load Using Section Properties Factor (단면 수정계수를 이용한 이동 하중에 따른 트러스 연결부의 응력해석)

  • 이상호;배기훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.354-361
    • /
    • 2002
  • This paper propose section properties factor to generate stress history for fatigue analysis and safety inspection of steel bridge. A methodology is described for the computation of numerical stress histories in the steel truss bridge, caused by the vehicles using section properties factor. The global 3-D beam model of bridge is combined with the local shell model of selected details. Joint geometry is introduced by the local shell model. The global beam model takes the effects of joint rigidity and interaction of structural elements into account. Connection nodes in the global beam model correspond to the end cross-section centroids of the local shell model. Their displacements are interpreted as imposed deformations on the local shell model. The load cases fur the global model simulate the vertical unit force along the stringers. The load cases fer the local model are imposed unit deformations. Combining these, and applying vehicle loads, numerical stress histories are obtained. The method is illustrated by test load results of an existing bridge.

  • PDF

A study on the improvement of the local stress field using the theory of conjugate approximations and loubignac's iterative method (공액근사개념과 Loubignac의 반복계산법을 이용한 국부응력장 개선에 대한 연구)

  • Song, Kee-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1598-1608
    • /
    • 1997
  • Based on the application of te theory of conjugate approximations and the Loubignac's iterative method in a local region, a method to improve the stress filed in a displacement-formulated finite element solution has been proposed. The validity of the proposed method has been tested through two examples : a thick cylinder under internal pressure loading and an infinite plate with a central circular hole subjected to uniaxial tension. As a result of analysis of the examples, it was found that the stress field obtained for the local region model by the proposed method approximates well for the whole domain model. In addition, it was found that because of a significant decrease in the computing time to obtain the improved stress field, the proposed method is efficient and useful for the detailed stress analysis in local regions.

Finite Element Based Stress Concentration Factors for Pipes with Local Wall Thinning (유한요소해석을 이용한 국부 감육배관에 대한 응력집중계수 제시)

  • Son, Beom-Goo;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1014-1020
    • /
    • 2004
  • The present work complies the elastic stress concentration factor for a pipe with local wall thinning, based on detailed three-dimensional elastic FE analysis. To cover practically interesting cases, a wide range of pipe and defect geometries are considered, and both internal pressure and global bending are considered. Resulting values of stress concentration factors are tabulated for practical use, and the effect of relevant parameters such as pipe and defect geometries on stress concentration factors are discussed. The present results would provide valuable information to estimate fatigue damage of the pipe with local wall thinning under high cycle fatigue.

A study on the improvement of the local stress field in a displacement-formulated finite element solution (변위형 유한요소 해에서 국부응력장 향상에 대한 연구)

  • Song, Kee-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.278-288
    • /
    • 1998
  • An efficient and useful method to improve the local stress field in a displacement-formulated finite element solution has been proposed using the theory of conjugate approximations for a stress field and the Loubignac's iterative method for a displacement field. Validity of the proposed method has been tested through three test examples, to improve the stress field and displacement field in the whole domain and the local regions. As a result of analysis on the test examples, it is found that the stress field in the local regions are approximated to those in the whole domain within a few iterations which have satisfied the original finite element equilibrium equation. In addition, it is found that the local stress field are by far better approximated to the exact stress field than the displacement-based stress field with the reduction of the finite-element mesh-size.

Fatigue Life Analysis of Butt-welded specimen by Local Strain Approach (국부변형률방법을 이용한 용접시험편의 피로수명 해석)

  • Lee Dong-Hyong;Seo Jung-Won;Goo Byeong-choon;Seok Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.73-78
    • /
    • 2003
  • The residual stresses and. distortions of structures by welding exert negative effect on the safety of railroad structures. This investigation performs a thermal elasto-plastic analysis using finite element techniques to evaluate residual stresses in butted-welded joint. Considering this initial residual stresses, local stress and strain at the critical location (weld toe) during the loading were analyzed by elastic plastic finite element analysis. Fatigue crack initiation life and fatigue crack propagation life of butt-welded specimen were predicted by local strain approach and Neuber's role and Paris law. It is demonstrated that fatigue life estimates by local strain approach closely approximate the experimental results.

  • PDF