• Title/Summary/Keyword: Locomotor function

Search Result 62, Processing Time 0.03 seconds

Effects of Gentianae Macrophyllae Radix on the functional recovery and expression of BDNF and c-Fos after sciatic crushed nerve injury in rats

  • Cho, Hyun-Chol;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.28-38
    • /
    • 2009
  • Background : Peripheral nerve injuries are a commonly encountered clinical problem and often result in a chronic pain and severe functional deficits. Objective : The aim of this study was to evaluate the effects of Gentianae Macrophyllae Radix (G. M. Radix) on the pain control and the recovery of the locomotor function that results from the sciatic crushed nerve injury in rats. Method : Using rats, we crushed their sciatic nerve, and then orally administered the aqueous extract of G. M. Radix. The effects of G. M. Radix on the recovery locomotor function were investigated by walking track analysis. The effects of G. M. Radix on pain control were investigated by brain-derived neurotrophic factor (BDNF) expression in the sciatic nerve, and c-Fos expression in the paraventricular nucleus (PVN) of the hypothalamus and in the ventrolateral periaqueductal gray (vlPAG). Result : G. M. RADIX facilitates motor function from the locomotor deficit, and thereby increased BDNF expression and suppressed painful stimuli in the PVN and vlPAG after sciatic crushed nerve injury. Conclusion : It is suggested that G. M. Radix might aid recovery locomotor function and control pain after sciatic crushed nerve injury. Further studies on identifying specific the component in G.M. Radix associated with enhanced neural activity in the peripheral nerve injury may be helpful to develop therapeutic strategies for the treatment of peripheral nerve injury.

  • PDF

The mechanism of human neural stem cell secretomes improves neuropathic pain and locomotor function in spinal cord injury rat models: through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities

  • I Nyoman Semita;Dwikora Novembri Utomo;Heri Suroto;I Ketut Sudiana;Parama Gandi
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.72-83
    • /
    • 2023
  • Background: Globally, spinal cord injury (SCI) results in a big burden, including 90% suffering permanent disability, and 60%-69% experiencing neuropathic pain. The main causes are oxidative stress, inflammation, and degeneration. The efficacy of the stem cell secretome is promising, but the role of human neural stem cell (HNSC)-secretome in neuropathic pain is unclear. This study evaluated how the mechanism of HNSC-secretome improves neuropathic pain and locomotor function in SCI rat models through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Methods: A proper experimental study investigated 15 Rattus norvegicus divided into normal, control, and treatment groups (30 µL HNSC-secretome, intrathecal in the level of T10, three days post-traumatic SCI). Twenty-eight days post-injury, specimens were collected, and matrix metalloproteinase (MMP)-9, F2-Isoprostanes, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and brain derived neurotrophic factor (BDNF) were analyzed. Locomotor recovery was evaluated via Basso, Beattie, and Bresnahan scores. Neuropathic pain was evaluated using the Rat Grimace Scale. Results: The HNSC-secretome could improve locomotor recovery and neuropathic pain, decrease F2-Isoprostane (antioxidant), decrease MMP-9 and TNF-α (anti-inflammatory), as well as modulate TGF-β and BDNF (neurotrophic factor). Moreover, HNSC-secretomes maintain the extracellular matrix of SCI by reducing the matrix degradation effect of MMP-9 and increasing the collagen formation effect of TGF-β as a resistor of glial scar formation. Conclusions: The present study demonstrated the mechanism of HNSC-secretome in improving neuropathic pain and locomotor function in SCI through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities.

Group Locomotor Imagery Training-Combined Knowledge of Performance in Community-Dwelling Individuals With Chronic Stroke: A Pilot Study

  • Choi, Bo-Ram;Hwang, Su-Jin;Lee, Hee-Won;Kang, Sun-Young;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.20 no.1
    • /
    • pp.74-80
    • /
    • 2013
  • We evaluated whether group locomotor imagery training-combined knowledge of performance (KP) lead to improvements in gait function in community dwelling individuals with chronic stroke. Ten adults who had suffered a hemiparetic stroke at least 6 months earlier participated in group locomotor imagery training-combined KP for 5 weeks, twice per week, with 2 h intensive training. Dynamic gait index scores increased significantly after the group locomotor imagery training-combined KP. However, times for the timed up-and-go test did not improve significantly after the training. Group locomotor imagery training-combined KP may be a useful option for the relearning of gait performance for community dwelling individuals with chronic hemiparetic stroke.

Therapeutic Approach for Stroke Patients based on Central Pattern Generator (중추유형발생기에 근거한 뇌졸중 환자의 치료적 접근)

  • Kim Joong-Hwi;Kim Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.131-146
    • /
    • 2002
  • In the last years, it has become possible to regain some locomotor activity in patients with incomplete spinal cord injury (SCI) through intense training on a treadmill. The ideas behind this approach owe much to insights derived from animal studies. Many studies showed that cats with complete spinal cord transection(spinalized animals) can recover locomotor function. These observations were at the basis of the concept of the central pattern generator located at spinal level. The neural system responsible for the locomotor restoration in both cats and humans is thought to be located at spinal level and is referred to as the central pattern generator(CPG). The evidence for such a spinal CPG in human is emphasis on some recent developments which support the view that there is a human spinal CPG for locomotion. An important element in afferent inputs for both spinal injured cats and humans is the provision of adequate sensory input related locomotor, which can possibly activate and/or regulate the spinal locomotor circuitry This review article deals with the afferent control of the central pattern generator. Furthermore, the application of adequate afferent inputs related locomotor for stroke patients will be able to facilitate locomotion ability, which is automatic, cyclic, rhythmic. These insights can possibly contribute to a better therapeutic approach for the rehabilitation of gait in patients with stroke.

  • PDF

Effects of Task-Oriented Circuit Class Training on Improves Performance of Locomotor in Disabled Persons after Stroke (과제-지향 순회 훈련이 뇌졸중 장애인의 이동 능력에 미치는 효과)

  • Kim, Soo-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.4
    • /
    • pp.447-454
    • /
    • 2011
  • Purpose : The purpose of this study was to identify the effects of circuit class training on the performance of locomotor tasks in chronic stroke. Methods : The study included 45 patients with chronic stroke randomly divided into experimetal group and control group. Both groups participated in exercise classes three times a week for 8weeks. The experimental group had 10 workstation of circuit class designed to improve walking. The control group practiced fitness exercises by equipment in health center. Walking performance was assessed by measuring walking speed(timed 10-meter walk and TUG), GAITRite analysis and peak vertical ground reaction force through the affected foot during walking. Results : The experimental group demonstrated significant improvement(p<.05) compared with the control group in 10-meter walking and vertical ground reaction force after training. The experimental group showed significant improvements in the walking velocity and cadence by GAITRite system(p<.05). Conclusion : Task- oriented circuit class training leads to improvements in locomotor function in chronic stroke. Further studies are necessary to occur in usual environments to improve walking performance.

Effect of Stem Cell Transplantation on Pain Behavior and Locomotor Function in Spinal Cord Contusion Model

  • Park, Hea-Woon;Kim, Su-Jeong;Cho, Yun-Woo;Hwang, Se-Jin;Lee, Won-Yub;Ahn, Sang-Ho;Jang, Sung-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.3
    • /
    • pp.79-85
    • /
    • 2010
  • Purpose: Many trials for new therapeutic approaches such as stem cell-based transplantation have been conducted to improve the repair and regeneration of injured cord tissue and to restore functions following spinal cord injury (SCI) in animals and humans. Adipose tissue-derived stromal cells (ATSCs) have multi-lineage potential to differentiate into cells with neuron-like morphology. Most studies of stem cell transplantation therapy after SCI are focused on cellular regeneration and restoration of motor function, but not on unwanted effects after transplantation such as neuropathic pain. This study was focused on whether transplantation of ATSCs could facilitate or attenuate hindpaw pain responses to heat, cold and mechanical stimulation, as well as on improvement of locomotor function in a rat with SCI. Methods: A spinal cord injury rat model was produced using an NYU impactor by dropping a 10 g rod from a height of 25 mm on to the T9 segment. Human ATSCs (hATSCs; approximately $5{\times}10^5$ cells) or DMEM were injected into the perilesional area 9 days after the SCI. After transplantation, hindpaw withdrawal responses to heat, cold and mechanical allodynia were measured over 7 weeks. Motor recovery on the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and on the inclined plane test were also evaluated. Results: The present study demonstrated that increased hindpaw withdrawal responses to cold allodynia was observed in both groups after transplantation, but the development of cold-induced allodynia in the hATSC transplantation group was significantly larger than in the control group. The difference between the two groups in locomotor functional improvement after SCI was also significant. Conclusion: Careful consideration not only of optimal functional benefits but also of unintended side effects such as neuropathic pain is necessary before stem cell transplantation therapy after SCI.

Intra-Spinal Bone Marrow Mononuclear Cells Transplantation Inhibits the Expression of Nuclear Factor-${\kappa}B$ in Acute Transection Spinal Cord Injury in Rats

  • Shrestha, Rajiv Prasad;Qiao, Jian Min;Shen, Fu Guo;Bista, Krishna Bahadur;Zhao, Zhong Nan;Yang, Jianhua
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.5
    • /
    • pp.375-382
    • /
    • 2014
  • Objective : To assess the effect of bone marrow mononuclear cells (BMMNCs) transplantation in the expression of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) in spinal cord injury (SCI) in rats. Methods : BMMNCs were isolated from tibia and femur by a density gradient centrifugation. After establishment of acute transection SCI, rats were divided into experiment (BMMNCs), experiment control (0.1 M PBS infused) and sham surgery groups (laminectomy without any SCI). Locomotor function was assessed weekly for 5 weeks post-injury using BBB locomotor score and urinary bladder function daily for 4 weeks post-injury. Activity of NF-${\kappa}B$ in spinal cord was assessed by immunohistochemistry and reverse transcriptase polymerase chain reaction. Results : At each time point post-injury, sham surgery group had significantly higher Basso, Beattie, Bresnahan locomotor and urinary bladder function scores than experiment and experiment control group (p<0.05). At subsequent time interval there were gradual improvement in both experiment and experiment control group, but experiment group had higher score in comparison to experiment control group (p<0.05). Comparisons were also made for expression of activated NF-${\kappa}B$ positive cells and level of NF-${\kappa}B$ messenger RNA in spinal cord at various time points between the groups. Activated NF-${\kappa}B$ immunoreactivity and level of NF-${\kappa}B$ mRNA expression were significantly higher in control group in comparison to experiment and sham surgery group (p<0.05). Conclusion : BMMNCs transplantation attenuates the expression of NF-${\kappa}B$ in injured spinal cord tissue and thus helps in recovery of neurological function in rat models with SCI.

Effect of Multisensory Intervention on Locomotor Function in Older Adults with a History of Frequent Falls

  • You, Sung-Hyun
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.51-60
    • /
    • 2004
  • Falls are common, costly, and a leading cause of death among older adults. The major predisposing factors of a fall may include age-related deterioration in the dynamic system composed of auditory, somatosensory, vestibular, visual, musculoskeletal, and neuromuscular subsystems. Older adults with a history of frequent falls demonstrated significant reductions in gait velocity, muscle force production, and balance performance. These altered neuromechanical characteristics may be further exaggerated when faced with conflicting multisensory conditions. Despite the important contribution of multisensory function on the sensorimotor system during postural and locomotor tasks, it remains unclear whether multisensory intervention will produce dynamic balance improvement during locomotion in older adults with a history of frequent falls. Therefore, the purpose of this paper is to address important factors associated with falls in elderly adults and provide theoretical rationale for a multisensory intervention program model.

  • PDF

Behavioral Characteristics Following Lesions of the Nucleus Accumbens Septi in Rats (측좌각의 부위별 파괴가 행동에 미치는 영향)

  • Lee, Soon-Chul
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.111-118
    • /
    • 1985
  • Caudal, rostral and both areas of the nucleus accumbens septi (NAB) were lesioned each in separate animal group by applying DC of 3.0 mA for 15 sec. in order to examine if any regional differences in the NAB with regard to the manifestation of locomotor activity, The r-NAB and cr-NAB-lesioned rats were significantly increased in locomotor activity but not in the c-NAB-lesioned rats and the effect following the NAB lesion was immediately produced and returned to control levels in about 7 days postoperatively. On the other hand, the locomotor stimulation produced by methamphetamine was significantly attenuated in all NAB-lesioned rats but also stereotyped behavior was significantly elicited simultaneously. These results thus suggested that NAB may be attributed to the inhibitory role in the locomotor activity, of which intensity differs from rostral site and caudal site, and stereotyped behavior may be shown higher sensitivity of the denervated striatal dopamine function.

  • PDF

Skeletal Differences in Lower Body and Limbs in Relation to Ecological Traits in Anurans in South Korea

  • Park, Jun-Kyu;Kang, Tae Gyu;Lee, Ji-Eun;Kim, Ji-Eun;Kim, Younghyun;Do, Yuno
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • The trade-off between morphology and physical function may vary according to ecological traits. Taking a quantitative approach, we attempted to analyze the differences in the skeletal shape of the lower body and limbs in relation to the ecological traits of four anuran species (Dryophytes japonicus, Glandirana rugosa, Pelophylax nigromaculatus, and Lithobates catesbeianus) occurring in South Korea. Body size, locomotor mode, microhabitat, trophic positions, and predator defense mechanisms were selected for the ecological traits of the anurans. The pelvis, ilium, and urostyle, which are associated with locomotor performance, were selected for the skeletal shape of the lower body. The ratio of limbs, which is related to locomotor mode and microhabitat, was confirmed by analyzing the skeletons of the forelimbs (radio-ulnar and humerus) and hindlimbs (femur and tibiofibular). Both landmark-based geometric morphometrics and traditional methods were used for skeletal shape comparison. The skeletal shape of the lower body was completely different among the four species, whereas the ratio of the limbs was only different in D. japonicus. The skeletal shape of the lower body may be related to body mass and predator defense mechanisms, whereas the ratio of the limbs was related to the locomotor mode and microhabitat. Quantifying these morphological differences among various species can help elucidate the mechanisms of behavioral and morphological changes in response to ecological effects.