• Title/Summary/Keyword: Logic-based optical processing

Search Result 14, Processing Time 0.021 seconds

Asymmetric Public Key Cryptography by Using Logic-based Optical Processing

  • Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.55-63
    • /
    • 2016
  • In this paper, a new asymmetric public key cryptography based on the modified RSA algorithm is proposed by using logic-based optical processing. The proposed asymmetric public key algorithm is realized into an optical schematic, where AND, OR and XOR logic operations are implemented by using free space digital optics architecture. Schematically, the proposed optical configuration has an advantage of generating the public keys simultaneously. Another advantage is that the suggested optical setup can also be used for message encryption and decryption by simply replacing data inputs of SLMs in the optical configuration. The last merit is that the optical configuration has a 2-D array data format which can increase the key length easily. This can provide longer 2-D key length resulting in a higher security cryptosystem than the conventional 1-D key length cryptosystem. Results of numerical simulation and differential cryptanalysis are presented to verify that the proposed method shows the effectiveness in the optical asymmetric cryptographic system.

All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators

  • Dolatabady, Alireza;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.432-442
    • /
    • 2012
  • In this paper, we propose, analyze and simulate the performances of some new plasmonic logic gates in two dimensional plasmonic waveguides with nanodisk resonators, using the numerical method of finite difference time domain (FDTD). These gates, including XOR, XNOR, NAND, and NOT, can provide the highly integrated optical logic circuits. Also, by cascading and combining these basic logic gates, any logic operation can be realized. These devices can be utilized significantly in optical processing and telecommunication devices.

All Optical Logic Gate Based On Optical Bistability of DFB SOA (DFB SOA의 광쌍안정 특성을 이용한 전광논리구현)

  • Kim, Byung-Chae;Kim, Young-Il;Lee, Seok;Woo, Deok-Ha;Yoon, Tae-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.112-113
    • /
    • 2002
  • Optical bistability can be applied to the optical logic. optical signal processing and optical memory. We have measured the optical bistability of DFB-SOA and demonstrated all-optical OR logic gate using switching characteristics of DFB-SOA.

  • PDF

Optical Implementation of Triple DES Algorithm Based on Dual XOR Logic Operations

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.362-370
    • /
    • 2013
  • In this paper, we propose a novel optical implementation of a 3DES algorithm based on dual XOR logic operations for a cryptographic system. In the schematic architecture, the optical 3DES system consists of dual XOR logic operations, where XOR logic operation is implemented by using a free-space interconnected optical logic gate method. The main point in the proposed 3DES method is to make a higher secure cryptosystem, which is acquired by encrypting an individual private key separately, and this encrypted private key is used to decrypt the plain text from the cipher text. Schematically, the proposed optical configuration of this cryptosystem can be used for the decryption process as well. The major advantage of this optical method is that vast 2-D data can be processed in parallel very quickly regardless of data size. The proposed scheme can be applied to watermark authentication and can also be applied to the OTP encryption if every different private key is created and used for encryption only once. When a security key has data of $512{\times}256$ pixels in size, our proposed method performs 2,048 DES blocks or 1,024 3DES blocks cipher in this paper. Besides, because the key length is equal to $512{\times}256$ bits, $2^{512{\times}256}$ attempts are required to find the correct key. Numerical simulations show the results to be carried out encryption and decryption successfully with the proposed 3DES algorithm.

Ultrahigh Speed Reconfigurable Logic Operations Based on Single Semiconductor Optical Amplifier

  • Kaur, Sanmukh;Kaler, Rajinder-Singh
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.13-16
    • /
    • 2012
  • We demonstrate an optical gate architecture using a single SOA to perform AND, OR and NOT logic functions. Simple reconfigurable all-optical logic operations are implemented using RZ modulated signals at 40 Gb/s. Contrast ratio and extinction ratio values have been analysed for the different types of logic gates. Maximum extinction ratio and contrast ratio achieved are 19dB and 17.2 dB respectively. Simple structure and potential for integration makes this architecture an interesting approach in photonic computing and optical signal processing.

Various functionalities Based on Semiconductor Optical Amplifer for All-Optical Information Processing

  • Lee, Seok;Kim, Jae-Hun;Kim, Young-Il;Byun, Young-Tae;Jhon, Young-Min;Woo, Deok-Ha;Kim, Sun-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.165-171
    • /
    • 2002
  • By using a semiconductor optical amplifier and a cross-phase modulation wavelength converter, fundamental all-optical logic gates including NOT, AND, NOR, XOR, and XNOR have been newly proposed and implemented. Realization of these all-optical logic gates will bring up not only all-optical networks but also all-optical computing and signal processing.

Demonstration of 10 Gbps, All-optical Encryption and Decryption System Utilizing SOA XOR Logic Gates (반도체 광 증폭기 XOR 논리게이트를 이용한 10 Gbps 전광 암호화 시스템의 구현)

  • Jung, Young-Jin;Park, Nam-Kyoo;Jhon, Young-Min;Woo, Deok-Ha;Lee, Seok;Gil, Sang-Keun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.237-241
    • /
    • 2008
  • An all-optical encryption system built on the basis of electrical logic circuit design principles is proposed, using semiconductor optical amplifier (SOA) exclusive or (XOR) logic gates. Numerical techniques (steady-state and dynamic) were employed in a sequential manner to optimize the system parameters, speeding up the overall design process. The results from both numerical and experimental testbeds show that the encoding/decoding of the optical signal can be achieved at a 10 Gbps data rate with a conventional SOA cascade without serious degradation in the data quality.

10 Gb/s All-optical half adder by using semiconductor optical amplifier based devices (반도체 광증폭기에 기반을 둔 10 Gb/s 전광 반가산기)

  • Kim, Jae-Hun;Jhon, Young-Min;Byun, Young-Tae;Lee, Seok;Woo, Deok-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.421-424
    • /
    • 2002
  • By using SOA (Semiconductor Optical Amplifier) based devices, an all-optical half adder has been successfully demonstrated at 10 Gb/s. All-optical XOR and AND gates are utilized to realize SUM and CARRY. Since SUM and CARRY have been simultaneously realized to form the all-optical half adder, complex calculation and signal processing can be achieved.

All-Optical Gray Code to Binary Coded Decimal Converter (전광 그레이코드 이진코드 변환기)

  • Jung, Young-Jin;Park, Nam-Kyoo;Jhon, Young-Min;Woo, Deok-Ha;Lee, Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • An all-optical 4-bit Gray code to binary coded decimal (BCD) converter by means of commercially available numerical analysis tool (VPI) was demonstrated, for the first time to our knowledge. Circuit design approach was modified appropriately in order to fit the electrical method on an all-optical logic circuit based on a cross gain modulation (XGM) process so that signal degradation due to the non-ideal optical logic gates can be minimized. Without regenerations, Q-factor of around 4 was obtained for the most severely degraded output bit (least significant bit-LSB) with 2.5 Gbps clean input signals having 20 dB extinction ratio. While modifying the two-level simplification method and Karnaugh map method to design a Gray code to BCD converter, a general design concept was also founded (one-level simplification) in this research, not only for the Gray code to BCD converter but also for any general applications.

All-optical signal processing in a bent nonlinear waveguide (굽은 비선형 도파로를 이용한 완전 광 신호 처리 소자)

  • 김찬기;정준영;장형욱;송준혁;정제명
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.492-499
    • /
    • 1997
  • We proposed and studied an all-optical switching device made of a bent nonlinear waveguide and an all-optical logic gate made of a bent nonlinear Y-junction. The proposed devices as switch and a logic function are based on the evolution of nonlinear guided wave along a bent nonlinear waveguide. Since the characteristics of beam propagation depens on the nonlinearity, input power and bent angle of waveguide, the characteristics of output power transmission is calculated by variation the such parameters. Furthermore, by calculating the output power through the nonlinear media with different positions of detector in nonlinear media, we could find the ideal digital switching performance at specific position of detector and implement several all-optical logic functions (AND, OR, XOR) by power contrast between waveguide end and nonlinear media.

  • PDF