• Title/Summary/Keyword: Long term strength

Search Result 886, Processing Time 0.03 seconds

Long-term development of compressive strength and elastic modulus of concrete

  • Yang, Shuzhen;Liu, Baodong;Yang, Mingzhe;Li, Yuzhong
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.263-271
    • /
    • 2018
  • Compressive strength and elastic modulus of concrete are constantly changing with age. In order to determine long-term development of compressive strength and elastic modulus of concrete, an investigation of C30 concrete cured in air conditions was carried out. Changes of compressive strength and elastic modulus up to 975 days were given. The results indicated that compressive strength and elastic modulus of concrete rapidly increased with age during the initial 150 days and then increased slowly. The gain in elastic modulus was slower than that of compressive strength. Then relationships of time-compressive strength, time-elastic modulus and compressive strength-elastic modulus were proposed by regression analysis and compared with other investigations. The trends of time-compressive strength and time-elastic modulus with age agreed best with ACI 209R-92. Finally, factors contributed to long-term development of compressive strength and elastic modulus of concrete were proposed and briefly analyzed.

Effects of Long-term Heat treatment on Mechanical Softening of Mn-Mo-Ni Low-Alloy Steel (Mn-Mo-Ni 저합금강의 기계적 연화에 미치는 장시간 열처리 영향)

  • Kim, Minsuk;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.294-301
    • /
    • 2021
  • In the present study, we investigate the effects of long-term heat treatment at elevated temperatures on the mechanical softening of the Mn-Mo-Ni low-alloy steel. The influence of long-term heat treatment on microstructure and mechanical strength was evaluated. To simulate the long-term material degradation, heat treatment test was interrupted at several stages up to 10,000 hours in an electric furnace. The Mn-Mo-Ni low-alloy steel shows a typical bainitic phase, which consists of a well-developed lath substructure with fine precipitates along the lath boundaries. However, these fine precipitates were redissolved into the matrix with long-term heat treatment, and then the lath substructures were recovered. Consequently, ultimate tensile strength and yield strength decreased during long-term heat treatment showing a mechanical softening phenomenon.

A Study on the Performance Improvement and Long-Term Strength Properties of Eco-cement Concrete (에코시멘트 콘크리트의 장기강도 특성 및 성능 향상 방안에 관한 연구)

  • Park, Kwang-Min;Lee, Gun-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.817-826
    • /
    • 2011
  • Concrete using eco-cement has a problem with long-term strength development. However, currently, a long-term strength development mechanism is not confirmed, resulting in a lack of application of eco-cement in construction fields. In this study, the curing humidity influence on development in long-term strength of concrete using eco-cement and the relationship between strength and pore structure were examined. The results showed that wet cured eco-cement with a high water/cement ratio showed serious long-term strength reduction due to non-reduction of pore volume (pore size over 10 nm) in mortar caste with eco-cement. Also, the study results on improvement of long-term strength of eco-cement by partial replacement with ordinary portland cement and finely-ground fly ash showed that both of these alternatives improved long-term strength of concrete caste with eco-cement due to gradual refinement of their micro-structure.

Experimental study on long-term behavior of RC columns subjected to sustained eccentric load

  • Kim, Chang-Soo;Gong, Yu;Zhang, Xin;Hwang, Hyeon-Jong
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.289-299
    • /
    • 2020
  • To investigate the long-term behavior of eccentrically loaded RC columns, which are more realistic in practice than concentrically loaded RC columns, long-term eccentric loading tests were conducted for 10 RC columns. Test parameters included concrete compressive strength, reinforcement ratio, bar yield strength, eccentricity ratio, slenderness ratio, and loading pattern. Test results showed that the strain and curvature of the columns increased with time, and concrete forces were gradually transferred to longitudinal bars due to the creep and shrinkage of concrete. The long-term behavior of the columns varied with the test parameters, and long-term effects were more pronounced in the case of using the lower strength concrete, lower strength steel, lower bar ratio, fewer loading-step, higher eccentricity ratio, and higher slenderness ratio. However, in all the columns, no longitudinal bars were yielded under service loads at the final measuring day. Meanwhile, the numerical analysis modeling using the ultimate creep coefficient and ultimate shrinkage strain measured from cylinder tests gave quite good predictions for the behavior of the columns.

The Mechanical Properties of High Strength Concrete in Massive Structures

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.15 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • High strength concrete is being used increasingly in mass structure projects. The purpose of this study is to investigate the influence of temperature during mixing, placing and curing on the strength development, hydration products and pore structures of high strength concrete in mass structures. The experiments were conducted with two different model walls, viz.: 1.5 m and 0.3 m under typical summer and winter weather conditions. The final part of this study deal with the clarification of the relationship between the long-term strength loss and the microstructure of the high strength concrete at high temperatures. Test results indicated that high elevated temperatures in mass concrete structures significantly accelerate the strength development of concrete at the early ages, while the long-term strength development is decreased. The long-term strength loss is caused by the decomposition of ettringite and increased the total porosity and amount of small pores.

Evaluation of Durability and Long-term Design Tensile Strength of Flexible Geogrids (연성 지오그리드의 내구성 및 장기설계인장강도 평가)

  • 조삼덕;김진만;안주환;전한용;조성호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.21-38
    • /
    • 1999
  • Engineering properties of most polymers used in geosynthetics such as geogrid can be degraded by the chemical reaction (e.g., oxidization, ultraviolet rays, hydrolysis etc.), chemical and mechanical load, microorganism, and so on. In addition, polymer can be damaged by the compaction during construction, and the characteristic of tensile strength of polymer can be changed by the long-term creep effect. In this study, engineering properties of flexible geogrids which are manufactured by weaving/knitting the high-tenacity polymers such as polyester formed in a very open, grid-like configuration, coated with any one of a number of materials (e.g., PVC, latex, etc.), are investigated. Through the analysis of test results, the durability and the long-term design tensile strength of flexible geogrids are evaluated.

  • PDF

Assessments of the Combined Effect of Installation Damage and Creep on the Long-Term Design Strength of Geogrid for Railroad Reinforcement (철도노반 보강용 지오그리드의 크리프 및 손상이 장기 인장강도에 미치는 영향평가)

  • Lee Do-Hee;Park Tae-Soon;Cho Sam-Deok;Lee Kwang-Wu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1156-1161
    • /
    • 2004
  • The factors affecting the long-term design strength of geogrid for railroad reinforcement can be classified into factors on creep deformation, installation damage, temperature, chemical degradation, biological degradation. Especially, creep deformation and installation damage are considered as main factors to determine the long-term design strength of geogrid. This paper describes the results of a series of experimental study, which are carried out to assess the combined effect of installation damage and creep deformation for the long-term design strength of geogrid reinforcement. In this study, a series of field tests are carried out to assess installation damage of a various geogrids according to different fill materials, and then creep tests are conducted to assess the creep properties of both undamaged and damaged geogrids.

  • PDF

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.

Prediction of long-term compressive strength of concrete with admixtures using hybrid swarm-based algorithms

  • Huang, Lihua;Jiang, Wei;Wang, Yuling;Zhu, Yirong;Afzal, Mansour
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.433-444
    • /
    • 2022
  • Concrete is a most utilized material in the construction industry that have main components. The strength of concrete can be improved by adding some admixtures. Evaluating the impact of fly ash (FA) and silica fume (SF) on the long-term compressive strength (CS) of concrete provokes to find the significant parameters in predicting the CS, which could be useful in the practical works and would be extensible in the future analysis. In this study, to evaluate the effective parameters in predicting the CS of concrete containing admixtures in the long-term and present a fitted equation, the multivariate adaptive regression splines (MARS) method has been used, which could find a relationship between independent and dependent variables. Next, for optimizing the output equation, biogeography-based optimization (BBO), particle swarm optimization (PSO), and hybrid PSOBBO methods have been utilized to find the most optimal conclusions. It could be concluded that for CS predictions in the long-term, all proposed models have the coefficient of determination (R2) larger than 0.9243. Furthermore, MARS-PSOBBO could be offered as the best model to predict CS between three hybrid algorithms accurately.

Early-Age Properties of Polymer Fiber-Reinforced Concrete

  • Myers, Daniel;Kang, Thomas H.K.;Ramseyer, Chris
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • The cracking problem in concrete is widespread and complex. This paper reviews the problem and focuses on those parts of the problem that are more readily solved. Polymer fibers are shown to have promise in several important areas of the cracking problem. To investigate one of these areas of the cracking problem more completely, an experimental research program focusing on the early-age properties of fibers was carried out. This study researched the properties of four polymer fibers; two of the fibers were macrofibers, and two were microfibers. Each fiber was tested at several dosage rates to identify optimum dosage levels. Early-age shrinkage, long-term shrinkage, compressive strength, and tensile strength were investigated. Long-term shrinkage and strength impacts from the polymer fibers were minimal; however, the polymer fibers were shown to have a great impact on early-age shrinkage and a moderate impact on early-age strength.