• Title/Summary/Keyword: Loop Transfer Recovery

Search Result 58, Processing Time 0.04 seconds

Vibration-free Control of Double Integrator Typed Motor via Loop Transfer Recovery (루프 전달 회복을 통한 이중 적분 모터의 무진동 제어)

  • Suh, Sang-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.900-906
    • /
    • 2010
  • This note proposes vibration-free motor control through modified LQG/LTR methodology. A conventional LQG/LTR method is a design tool in the frequency domain. However, unlike the conventional one, the proposed one is a time response based design method. This feature is firstly designed by parameterized settling time control gain through the target loop design procedure and the feature is secondly realized by loop transfer recovery. In order to show convergence to the target loop transfer functions, asymptotic behaviors of the open and the closed loop transfer functions are shown. At the conclusion, it is verified that the proposed method is robustly stable to parametric uncertainties through ${\mu}$-plot.

A Study on the Characteristics of Boiling Heat Transfer of Two-Phase Loop Thermosyphons (루우프형 2상 유동 열사이폰의 비등열전달 특성에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.3
    • /
    • pp.639-646
    • /
    • 2014
  • A heat exchanger using two-phase loop thermosyphons was developed as a waste heat recovery system. An experimental study was carried out on the heat transfer characteristics of two-phase loop thermosyphons heat exchanger and the results from the experiments were used to see the possibility which the two-phase loop thermosyphons could be an alternate solution for waste heat recovery system. In the present work, R134a has been used as the working fluid and the filling rate do working fluid and heat flux have been used as the experimental parameters. The results show that the filling rate of working fluid and heat flux are very important factors for the operation of two-phase loop thermosyphons. The experimental results showed the provisional results as a waste heat recovery system.

LPG/LTR Method for Output-Delayed System (출력 시가 지연 시스템의 LQG/LTR 방법)

  • 이상정;홍석민
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.827-837
    • /
    • 1994
  • This paper presents robustness propertis of the Kalman Fiter and the associated LQG/LTR method for linear time-invariant output-delayed systems. It is shown that, even for minimum phase plants, the LQG/LTR method can not recover the target loop transfer function. Instead, an upper bound on the recovery error is obtained using an upper bound of the solution of the Kalman filter Riccati equations. Finally, some dual properties between output-delayed systems and input-delayed systems are exploited.

  • PDF

Loop transfer recovery design for input-delayed systems (입력 시간지연 시스템의 루우프 전달복구 설계 기법)

  • 박상현;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1201-1204
    • /
    • 1996
  • The previous results on LTR methods for time delay systems need the solution of the operator-type Riccati equation. In addition, it can be difficult to make the target loop shape representing the design specification. This paper proposes a new LTR method for input-delayed systems using well-established LTR method for non-delay systems. For doing this, a time delay margin is derived and the time delay of the input-delayed systems is assumed less than equal to the time delay margin. A simple example is presented for illustrations.

  • PDF

Robust Control of Two-axes Precise Stage Using LMI Optimization (LMI 최적화를 이용한 2축 정밀 스테이지의 강인제어)

  • Kim, Yeung-Shik;Park, Heung-Seok;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.845-851
    • /
    • 2013
  • In this paper, a robust optimization approach is applied to the two-axes stage using a piezoelectric actuator for precise motion tracking. Robust control is based on LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) control. Further, an LMI (linear matrix inequality) is used to find the optimal parameter in the loop transfer recovery step, instead of a trial and error method. A decoupler in the shape of FIR filter is added to reduce the coupling effect between the motions of the two axes, and hence, the feedback control loop is designed independently for each axis motion. The experimental result shows that the proposed control scheme can be applied effectively for motion control of the two-axes stage.

Study on Two-Phase Loop Thermosyphon Heat Exchanger (루프형 2상 유동 열사이폰 열교환기에 관한 연구)

  • 이기우;박기호;이석호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.717-724
    • /
    • 2002
  • A heat exchanger (100,000 W) using two-phase loop thermosyphons (TLT) was developed as a waste heat recovery system. An experimental and simulation study was carried out on the heat transfer characteristics of TLT heat exchanger, and the results from the experiments were used to see the possibility which the TLT heat exchanger could be an alternate solution for waste heat recovery system. The experimental results showed the provisional results as a waste heat recovery system. Also computer simulation code can predict the TLT system about the effects of various variables for the operation. Computer simulation results based on the thermal resistance networks were compared with the experimental results. The study clearly shows that the computer simulation for the TLT heat exchanger can Predict the most cases of the affecting parameters involved, provided that correct empirical correlations are used.

Autopilot design for BTT flight vehicles (이동중인 비행시스템의 자동조종장치 설계)

  • 백운보;허남수;이만형;황창선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.87-92
    • /
    • 1989
  • An autopilot for the class of Bank-To-Turn missiles is developed using a multivariable plant model & control design methodology. The roll-pitch-yaw cross coupling is included in the design considerations. Feedback system is designed using the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR). Nonlinear simulations are presented to demonstrate the performances of the designed system.

  • PDF

Satellite Attitude Control Using Optimal Control Law (최적제어 기법을 이용한 위성의 자세제어)

  • 양재윤;박수홍;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.395-400
    • /
    • 1991
  • In spinning satellite, a gyrotorquer generates a control torquer along two orthogonal axes normal to the spin axis of the vehicle. Matrix Fraction Description(MFD) are used to obtain minimal realization of the transfer matrix relating the attitude angles and the rate of rotation of the gimbals of gyrotorquer. In this paper, the Linear Quadratic Gaussian with Loop Transfer Recovery and H.meihodologies are used to design controller for spinning satellite.

  • PDF

LQG/LTR-PID based Controller Design of UAV Slung-Load Transportation System (LQG/LTR과 PID 기반의 무인항공기 슬렁-로드 수송 시스템의 제어기 설계)

  • Lee, Hae-In;Yoo, Dong-Wan;Lee, Byung-Yoon;Moon, Gun-Hee;Lee, Dong-Yeon;Tahk, Min-Jea
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1209-1216
    • /
    • 2014
  • This paper copes with control design for unmanned aerial vehicle transportation system. Moving pendulum dynamics of slung-load system is derived using two methods: Udwadia-Kalaba equation and Newtonian approach. PID controller is applied to Udwadia-Kalaba equation model for structural consistency and linear quadratic Gaussian / Loop Transfer Recovery (LQG/LTR) technique is employed for Newtonian model with minimal state-space realization. Characteristics of PID and LQG/LTR controller are compared, and two controllers are combined to compensate the drawbacks of each other. Numerical simulation is set for two cases and conducted to evaluate performance of designed controllers. The result proves that combination of LQG/LTR and PID control performs stable and robust.