• Title/Summary/Keyword: Looseness of Bolts

Search Result 10, Processing Time 0.029 seconds

Bolt looseness detection and localization using time reversal signal and neural network techniques

  • Duan, Yuanfeng;Sui, Xiaodong;Tang, Zhifeng;Yun, Chungbang
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.397-410
    • /
    • 2022
  • It is essential to monitor the working conditions of bolt-connected joints, which are widely used in various kinds of steel structures. The looseness of bolts may directly affect the stability and safety of the entire structure. In this study, a guided wave-based method for bolt looseness detection and localization is presented for a joint structure with multiple bolts. SH waves generated and received by a small number (two pairs) of magnetostrictive transducers were used. The bolt looseness index was proposed based on the changes in the reconstructed responses excited by the time reversal signals of the measured unit impulse responses. The damage locations and local damage severities were estimated using the damage indices from several wave propagation paths. The back propagation neural network (BPNN) technique was employed to identify the local damages. Numerical and experimental studies were conducted on a lap joint with eight bolts. The results show that the total damage severity can be successfully detected under the effect of external force and measurement noise. The local damage severity can be estimated reasonably for the experimental data using the BPNN constructed by the training patterns generated from the finite element simulations.

EMI based multi-bolt looseness detection using series/parallel multi-sensing technique

  • Chen, Dongdong;Huo, Linsheng;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • In this paper, a novel but practical approach named series/parallel multi-sensing technique was proposed to evaluate the bolt looseness in a bolt group. The smart washers (SWs), which were fabricated by embedding a Lead Zirconate Titanate (PZT) transducer into two flat metal rings, were installed to the bolts group. By series connection of SWs, the impedance signals of different bolts can be obtained through only one sweep. Therefore, once the loosening occurred, the shift of different peak frequencies can be used to locate which bolt has loosened. The proposed multi input single output (MISO) damage detection scheme is very suitable for the structural health monitoring (SHM) of joint with a large number of bolts connection. Another notable contribution of this paper is the proposal of 3-dB bandwidth root mean square deviation (3 dB-RMSD) which can quantitatively evaluate the severity of bolt looseness. Compared with the traditional naked-eye observation method, the equivalent circuit based 3-dB bandwidth can accurately define the calculation range of RMSD. An experiment with three bolted connection specimens that installed the SWs was carried out to validate our proposed approach. Experimental result shows that the proposed 3 dB-RMSD based multi-sensing technique can not only identify the loosened bolt but also monitor the severity of bolt looseness.

Detection and location of bolt group looseness using ultrasonic guided wave

  • Zhang, Yue;Li, Dongsheng;Zheng, Xutao
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.293-301
    • /
    • 2019
  • Bolted joints are commonly used in civil infrastructure and mechanical assembly structures. Monitoring and identifying the connection status of bolts is the frontier problem of structural research. The existing research is mainly on the looseness of a single bolt. This article presents a study of assessing the loosening/tightening health state and identifying the loose bolt by using ultrasonic guided wave in a bolt group joint. A bolt-tightening index was proposed for evaluating the looseness of a bolt connection based on correlation coefficient. The tightening/loosening state of the bolt was simulated by changing the bolt torque. More than 180 different measurement tests for total of six bolts were conducted. The results showed that with the bolt torque increases, value of the proposed bolt-tightening index increases. The proposed bolt-tightening index trend was very well reproduced by an analytical expression using a function of the torque applied with an overall percentage error lower than 5%. The developed damage index based on the proposed bolt-tightening index can also be applied to locate the loosest bolt in a bolt group joint. To verify the effectiveness of the proposed method, a bolt group joint experiment with different positions of bolt looseness was performed. Experimental results show that the proposed approach is effective to detect and locate bolt looseness and has a good prospect of finding applications in real-time structural monitoring.

Looseness Estimation of Bolts on Truss Structure with PZT Patches

  • Jiang, Zhongwei;Akeuchi, Yasutaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.86.6-86
    • /
    • 2002
  • This work presents a study on development of a practical and quantitative technique for assessment of the healthy state of a structure by piezoelectric impedance-based technique associated with longitudinal wave propagation measuring method. A truss structure embedded with piezoelectric patches is investigated for a fundamental study on estimation of the looseness of bolts in the joint. In order to evaluate the minute mechanical impedance change due to loosening bolt, a harmonic longitudinal elastic wave is applied to the structure by a pair of PZT patches and their electric impedance is measured simultaneously. According to the experimental results, the change of the electric impedance of P...

  • PDF

Development of a Technique to Prevent Bolt Looseness and to Decrease in Quantity for the Plate Type Heat Exchanger Used in Large Craft (선박용 판형 열교환기의 볼트풀림방지 및 수량최소화기법 개발)

  • Kim, Ho-Yoon;Bae, Won-Byong;Jang, Young-Jun;Han, Seung-Moo;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.44-51
    • /
    • 2007
  • There are many methods to assemble various parts of a product, and one of them is the bolting system widely used in a industrial field due to the merits; easiness to obtain strong tightening force, simplicity of assemble or disassemble in order to repair, substitution or cleaning, and so on. But this bolting system needs attachments not to let a bolt loose and they are an important factor to cost a great deal. In this study, some equations are suggested and FE analyses are carried out to verify the cause of the bolt looseness occurring in the tightening process. And because the number of bolts in the bolting system has been decided by empirical know-how of designers in the field, safety rate in the plate type heat exchanger is often too high. Therefore the equations to decrease in quantity are suggested in consideration of the relationship between a critical shearing force acting on the screw and a normal force acting on the cooling plate by the working fluid.

Estimation of Fastened Condition of Bolts Using PZT Patches (압전소자를 이용한 볼트체결 상태계측 및 측정)

  • Chae, Kwan-Seok;Ha, Nam;Hong, Dong-Pyo;Chae, Hee-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.889-893
    • /
    • 2004
  • This work presents a study on development of a practical and quantitative technique for assessment of the structural health condition by piezoelectric impedance-based technique associated with longitudinal wave propagation method. The bolt fastening condition is adjusted by torque wrench. In order to estimate the damage condition numerically, three damage indices, impedance peak frequency shift ${\Delta}F$ is proposed in this paper. Furthermore, an assessment method is described for estimation of the damage by using these three damage indices.

  • PDF

Corroded and loosened bolt detection of steel bolted joints based on improved you only look once network and line segment detector

  • Youhao Ni;Jianxiao Mao;Hao Wang;Yuguang Fu;Zhuo Xi
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Steel bolted joint is an important part of steel structure, and its damage directly affects the bearing capacity and durability of steel structure. Currently, the existing research mainly focuses on the identification of corroded bolts and corroded bolts respectively, and there are few studies on multiple states. A detection framework of corroded and loosened bolts is proposed in this study, and the innovations can be summarized as follows: (i) Vision Transformer (ViT) is introduced to replace the third and fourth C3 module of you-only-look-once version 5s (YOLOv5s) algorithm, which increases the attention weights of feature channels and the feature extraction capability. (ii) Three states of the steel bolts are considered, including corroded bolt, bolt missing and clean bolt. (iii) Line segment detector (LSD) is introduced for bolt rotation angle calculation, which realizes bolt looseness detection. The improved YOLOv5s model was validated on the dataset, and the mean average precision (mAP) was increased from 0.902 to 0.952. In terms of a lab-scale joint, the performance of the LSD algorithm and the Hough transform was compared from different perspective angles. The error value of bolt loosening angle of the LSD algorithm is controlled within 1.09%, less than 8.91% of the Hough transform. Furthermore, the proposed framework was applied to fullscale joints of a steel bridge in China. Synthetic images of loosened bolts were successfully identified and the multiple states were well detected. Therefore, the proposed framework can be alternative of monitoring steel bolted joints for management department.

A Study on Square-Structure Estimation of Fastening Condition of Bolt Using PZT Patches (PZT를 이용한 사각구조물 볼트체결상태 계측에 관한 연구)

  • Chae, Kwan-Seok;Ha, Nam;Hong, Dong-Pyo;Chae, Hee-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.860-863
    • /
    • 2005
  • This work presents a study on development of a practical and quantitative technique for assessment of the structural health condition by PZT impedance-based technique associated with longitudinal wave propagation. The bolt fastening condition is adjusted by torque wrench In order to estimate the damage condition numerically, we suggest the evaluation method of impedance peak frequency shift $\Delta$F in this paper.

  • PDF

Bolt-joint Structural Health Monitoring Technique Using Transfer Impedance (전달 임피던스를 이용한 볼트 접합부 구조 건전성 모니터링 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.387-392
    • /
    • 2019
  • A technique was researched to detect bolt looseness using a transfer impedance technique (the dual piezoelectric material technique) for monitoring the structural health of a bolt joint. In order to use the single piezoelectric material technique, an expensive impedance analyzer should be used. However, in the transfer impedance technique, low-cost fault detection can be performed using a general function generator and a digital multimeter. A steel plate frame test specimen composed of bolt joints was fabricated, and the tightening torques of the bolts were loosened step by step. By using the transfer impedance method, the damage index was obtained. It was found that the presence of faults could be reasonably estimated using the damage index, which increased with the degree of bolt looseness. An experiment was performed on the same specimen using the single piezoelectric material technique, and the results showed a similar tendency. It could be possible to estimate the damage of a bolt joint at low cost by eliminating the expensive impedance analyzer. This method could be used effectively for structural health monitoring after carrying out a study to estimate the fault location and severity.

Multiple damage detection of maglev rail joints using time-frequency spectrogram and convolutional neural network

  • Wang, Su-Mei;Jiang, Gao-Feng;Ni, Yi-Qing;Lu, Yang;Lin, Guo-Bin;Pan, Hong-Liang;Xu, Jun-Qi;Hao, Shuo
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.625-640
    • /
    • 2022
  • Maglev rail joints are vital components serving as connections between the adjacent F-type rail sections in maglev guideway. Damage to maglev rail joints such as bolt looseness may result in rough suspension gap fluctuation, failure of suspension control, and even sudden clash between the electromagnets and F-type rail. The condition monitoring of maglev rail joints is therefore highly desirable to maintain safe operation of maglev. In this connection, an online damage detection approach based on three-dimensional (3D) convolutional neural network (CNN) and time-frequency characterization is developed for simultaneous detection of multiple damage of maglev rail joints in this paper. The training and testing data used for condition evaluation of maglev rail joints consist of two months of acceleration recordings, which were acquired in-situ from different rail joints by an integrated online monitoring system during a maglev train running on a test line. Short-time Fourier transform (STFT) method is applied to transform the raw monitoring data into time-frequency spectrograms (TFS). Three CNN architectures, i.e., small-sized CNN (S-CNN), middle-sized CNN (M-CNN), and large-sized CNN (L-CNN), are configured for trial calculation and the M-CNN model with excellent prediction accuracy and high computational efficiency is finally optioned for multiple damage detection of maglev rail joints. Results show that the rail joints in three different conditions (bolt-looseness-caused rail step, misalignment-caused lateral dislocation, and normal condition) are successfully identified by the proposed approach, even when using data collected from rail joints from which no data were used in the CNN training. The capability of the proposed method is further examined by using the data collected after the loosed bolts have been replaced. In addition, by comparison with the results of CNN using frequency spectrum and traditional neural network using TFS, the proposed TFS-CNN framework is proven more accurate and robust for multiple damage detection of maglev rail joints.