• Title/Summary/Keyword: Low Stress Abrasive Wear

Search Result 5, Processing Time 0.02 seconds

Low streee Abrasive Wer mechanism of the Iron/Chromium Hardfacing Alloy (저응력하의 철/크롬 올버레이합금의 긁힘마모기구)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.73-83
    • /
    • 1998
  • This study investigated the relationships between the microstructure and the wear resistance of hardfaced iron/chromium alloys to examine the low stress abrasive wear mechanism. The effects of volume fraction of reinforcing phases(chromium carbide and eutectic phase) were studied. The alloys were deposited once or twice on a mild steel plate using a self-shielding flux cored arc welding process. The low stress abrasion resistance of he alloys against dry sands was measured by the Dry Sand/Ruber Wheel Abrasion Tester (RWAT). The wear resistance of hypoeutectic alloys, below 0.36 volume fraction of chromium-carbide phase (VFC), behaved as Equal Pressure Mode (EPM) for the inverse rule of mixture whereas the wear resistance of hypereutectic alloys, above 0.36 VFC, represented Equal Wear Mode (EWM) for the linear rule of mixture.

  • PDF

Effect of Matrix Phase on the Abrasive Wear Behavior of the High Cr White Iron Hardfacing Weld Deposites (고크롬 철계 오버레이용접층의 긁힘마모거동에 미치는 기지상의 영향)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.114-124
    • /
    • 1998
  • The effect of matrix phase (austenite, pearlite, martensite) on the low stress abrasion resistance in the chromium-carbide-type high Cr white iorn hardfacing weld deposites has been investigated. In order to examine matrix phase, a series of alloys with different matrix phase by changing the ratio of Cr/C system by heat treatment were employed. The alloys were deposited twice on a mild steel plate using self-shielding flux cored arc welding process. The low stress abrasion resistance of the alloys against sands was measured by the Dry Sand/Rubber Wheel Abrasion Test(RWAT). Even though formation of pearlite phase in the matrix showed higher hardness than that of austenite, there was no observable difference in wear resistance between the pearlite and austenite phase for the same amount of chromium-carbide in the matrix. On the other hand, the formation of martensitic phase,, from heat treated austenitic alloys (high content of Cr), enhanced wear resistance due to its fine secondary precipitates.

  • PDF

Effect of Volume Fraction of Cr Carbide Phase on the Abrasive Wear Behavior of the High Cr White Iron Harcfacing Weld Deposits (고크롬 철계 오버레이용접층의 긁힘마모거동에 미치는 크롬탄화물 양의 영향)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.125-133
    • /
    • 1998
  • The effect of volume fraction of Cr carbide phase (Cr CVF) on the low stress abrasion resistance in the chromium-carbide-type high Cr white iron hardfacing weld deposits has been investigated. In order to examine Cr CVF, a series of alloys with varying Cr CVF by changing chromium and carbon contents and the ratio of Cr/C were employed. The alloys were deposited once or twice on a mild steel plate using the self-shielding flux cored arc welding process. The low stress abrasion resistance of the alloys against sands was measured by the Dry Sand/Rubber Wheel Abrasion Test (RWAT). It was shown that hardness and abrasion resistance increased with increasing Cr CVF within the whole test range (Cr CVF : 0.23-0.64). Both primary Cr carbide and eutectic Cr carbide were particularly effective in resisting wear due to their high hardness.

  • PDF

Indentation and Sliding Contact Analysis between a Rigid Ball and DLC-Coated Steel Surface: Influence of Supporting Layer Thickness (강체인 구와 DLC 코팅면 사이의 압입 및 미끄럼 접촉해석: 지지층 두께의 영향)

  • Lee, JunHyuk;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.199-204
    • /
    • 2014
  • Various heat-treated and surface coating methods are used to mitigate abrasion in sliding machine parts. The most cost effective of these methods involves hard coatings such as diamond-like carbon (DLC). DLC has various advantages, including a high level of hardness, low coefficient of friction, and low wear rate. In practice, a supporting layer is generally inserted between the DLC layer and the steel substrate to improve the load carrying capacity. In this study, an indentation and sliding contact problem involving a small, hard, spherical particle and a DLC-coated steel surface is modeled and analyzed using a nonlinear finite element code, MARC, to investigate the influence of the supporting layer thickness on the coating characteristics and the related coating failure mechanisms. The results show that the amount of plastic deformation and the maximum principal stress decrease with an increase in the supporting layer thickness. However, the probability of the high tensile stress within the coating layer causing a crack is greatly increased. Therefore, in the case of DLC coating with a supporting layer, fatigue wear can be another important cause of coating layer failure, together with the generally well-known abrasive wear.

Machining Characteristics According to the Wheel Wear in Surface Grinding for Structural Ceramics of $Si^3 N_4$ ($Si^3 N_4$ 구조용세라믹재의 연삭가공시 숫돌마멸에 따른 가공특성)

  • 왕덕현;김원일;신경오
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.9-16
    • /
    • 2003
  • In this study, the decision of dressing time for diamond wheel was analyzed by observing with acoustic emission signals and surface roughness, and also obtained the machining characteristics by weibull distribution plot for the values of bending strength. From the experimental study, it was possible to predict the time of re-dressing for the diamond grinding wheel with the analysis of acoustic emission signals and surface roughness values, and following conclusions were obtained. The root-mem-square values of acoustic emission signals were obtained low as the increased of table speed for different abrasive grain size. This is caused by the lack of grinding power which is not able to get rid of all real grinding mass of depth as the table speed is increased. The values of bending strength for ground $Si_3 N_4$ specimens were decreased for gain size of #400 than that of #60, but it was found that the surface roughness values for gain size of #60 were better than that of #400. As compared the shape parameter of weibull distribution plot for the values of bending strength, it was found that the reliability of bending strength for grain size of #60 increased than that of #400.