• Title/Summary/Keyword: Low programming voltage

Search Result 47, Processing Time 0.035 seconds

A Study on Vector control of AC motor using Low-Voltage DSP for semiconductor transportation equipments (반도체 제조 장비용 저 전압 DSP칩을 이용한 서보 모터의 벡터제어에 관한 연구)

  • 홍선기;방승현;최치영
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.25-30
    • /
    • 2003
  • In this study, the controller using TMS320LF2407 low voltage DSP for motor control is designed and realized. It has 40 MIPS calculating ability and its driving voltage is 3.3 V for low power. The peripheral elements, however usually use 5 V and they need voltage transfer interface. In this study, voltage transformation and reducing noise are studied and space vector PWM is adopted as a motor control scheme. According to these methods, the efforts for software programming and calculation processes are reduced. In addition, the hardware is also simplified by substituting the current control part with software programming. Through this study, the DSP based servo controller increases its ability for high performance multi-function on semiconductor transportation equipments..

  • PDF

A Study on Voltage and Reactive Power Control Methodology using Integer Programming and Local Subsystem (지역 계통 구성과 Integer programming을 이용한 전압 및 무효전력 제어방안 연구)

  • Kim, Tae-Kyun;Choi, Yun-Hyuk;Seo, Sang-Soo;Lee, Byong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.543-550
    • /
    • 2008
  • This paper proposes an voltage and reactive power control methodology, which is motivated towards implementation in the korea power system. The main voltage control devices are capacitor banks, reactor banks and LTC transformers. Effects of control devices are evaluated by local subsystem's cost computations. This local subsystem is decided by 'Tier' and 'Electrical distance' in the whole system. The control objective at present is to keep the voltage profile within constraints with minimum switching cost. A robust control strategy is proposed to make the control feasible and optimal for a set of power-flow cases that may occur important event from system. This studies conducted for IEEE 39-bus low and high voltage contingency cases indicate that the proposed control methodology is much more effective than PSS/E simulation tool in deciding switching of capacitor and reactor banks.

The Characteristics of p-channel SONOS Transistor for the NAND Charge-trap Flash Memory (NAND 전하트랩 플래시메모리를 위한 p채널 SONOS 트랜지스터의 특성)

  • Kim, Byung-Cheul;Kim, Joo-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • In this study, p-channel silicon-oxide-nitride-oxide-silicon(SONOS) transistors are fabricated and characterized as an unit cell for NAND flash memory. The SONOS transistors are fabricated by $0.13{\mu}m$ low power standard logic process technology. The thicknesses of gate insulators are 2.0 nm for the tunnel oxide, 1.4 nm for the nitride layer, and 4.9 nm for the blocking oxide. The fabricated SONOS transistors show low programming voltage and fast erase speed. However, the retention and endurance of the devices show poor characteristics.

A high performance nonvolatile memory cell with phase change material of $Ge_1Se_1Te_2$ ($Ge_1Se_1Te_2$ 상변화 재료를 이용한 고성능 비휘발성 메모리에 대한 연구)

  • Lee, Jae-Min;Shin, Kyung;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.15-16
    • /
    • 2005
  • Chalcogenide phase change memory has high performance to be next generation memory, because it is a nonvolatile memory processing high programming speed, low programming voltage, high sensing margin, low consumption and long cycle duration. We have developed a new material of PRAM with $Ge_1Se_1Te_2$. This material has been propose to solve the high energy consumption and high programming current. We have investigated the phase transition behaviors in function of various process factor including contact size, cell size, and annealing time. As a result, we have observed that programming voltage and writing current of $Ge_1Se_1Te_2$ are more improved than $Ge_2Sb_2Te_5$ material.

  • PDF

The properties of Sb-doped $Ge_{1}Se_{1}Te_{2}$ thin films application for Phase-Change Random Access Memory (상변화 메모리 응용을 위한 Sb-doped $Ge_{1}Se_{1}Te_{2}$ 박막의 특성)

  • Nam, Ki-Hyeon;Choi, Hyuk;Ju, Long-Yun;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1329-1330
    • /
    • 2007
  • Phase-change random access memory(PRAM) has many advantages compare with the existing memory. For example, fast programming speed, low programming voltage, high sensing margin, low power consume and long cyclability of read/write. Though it has many advantages, there are some points which must be improved. So, we invented and studied new constitution of $Ge_{1}Se_{1}Te_{2}$ chalcogenide material. Actually, the performance properties have been improved surprisingly. However, crystallization time was as long as ever for amorphization time. In this paper, we studied in order to make set operation time and reset operation voltage reduced. In the present work, by alloying Sb in $Ge_{1}Se_{1}Te_{2}$. we could confirm that improved its set operation time and reset operation voltage. As a result, the method of Sb-alloyed $Ge_{1}Se_{1}Te_{2}$ can be solution to decrease the set operation time and reset operation voltage.

  • PDF

A study on characteristics of crystallization according to changes of top structure with phase change memory cell of $Ge_2Sb_2Te_5$ ($Ge_2Sb_2Te_5$ 상변화 소자의 상부구조 변화에 따른 결정화 특성 연구)

  • Lee, Jae-Min;Shin, Kyung;Choi, Hyuck;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.80-81
    • /
    • 2005
  • Chalcogenide phase change memory has high performance to be next generation memory, because it is a nonvolatile memory processing high programming speed, low programming voltage, high sensing margin, low consumption and long cycle duration. We have developed a sample of PRAM with thermal protected layer. We have investigated the phase transition behaviors in function of process factor including thermal protect layer. As a result, we have observed that set voltage and duration of protect layer are more improved than no protect layer.

  • PDF

A Novel a-Si TFT Backplane Pixel Structure Using Bootstrapped Voltage Programming of AM-OLED Displays

  • Pyon, Chang-Soo;Ahn, Seong-Jun;Kim, Cheon-Hong;Jun, Jung-Mok;Lee, Jung-Yeal
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.898-901
    • /
    • 2005
  • We propose a novel pixel structure using bootstrapped voltage programming for amorphoussilicon TFT backplane of AM-OLED (Active Matrix-Organic Light Emitting Diode) displays. The proposed structure is composed of two TFTs and one capacitor. It operates at low drive voltage ($0{\sim}5V$) which can reduce power consumption comparing with the conventional pixel circuit structure using same OLED material. Also, it can easily control dark level and use commercial mobile LCD ICs. In this paper, we describe the operating principle and the characteristics of the proposed pixel structure and verify the performance by SPICE simulation comparing with the conventional pixel structure.

  • PDF

Subsection Synchronous Current Harmonic Minimum Pulse Width Modulation for ANPC-5L Inverter

  • Feng, Jiuyi;Song, Wenxiang;Xu, Yuan;Wang, Fei
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1872-1882
    • /
    • 2017
  • Medium voltage drive systems driven by high-power multi-level inverters operating at low switching frequency can reduce the switching losses of the power device and increase the output power. Employing subsection synchronous current harmonic minimum pulse width modulation (CHMPWM) technique can maintain the total harmonic distortion of current at a very low level. It can also reduce the losses of the system, improve the system control performance and increase the efficiency of DC-link voltage accordingly. This paper proposes a subsection synchronous CHMPWM approach of active neutral point clamped five-level (ANPC-5L) inverter under low switching frequency operation. The subsection synchronous scheme is obtained by theoretical calculation based on the allowed maximum switching frequency. The genetic algorithm (GA) is adopted to get the high-precision initial values. So the expected switching angles can be achieved with the help of sequential quadratic programming (SQP) algorithm. The selection principle of multiple sets of the switching angles is also presented. Finally, the validity of the theoretical analysis and the superiority of the CHMPWM are verified through both the simulation results and experimental results.

The Fabrication and Characteristics of p-channel SONOS Charge-Trap Flash Memory (p채널 SONOS 전하트랩 플래시메모리의 제작 및 특성)

  • Kim, Byung-Cheul;Kim, Joo-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.604-607
    • /
    • 2008
  • In this study, p-channel silicon-oxide-nitride-oxide-silicon (SONOS) transistors are fabricated and characterized as an unit cell for NAND flash memory. The SONOS transistors are fabricated by $0.13{\mu}m$ low power standard logic process technology. The thicknesses of gate insulators are $20{\AA}$ for the tunnel oxide, $14{\AA}$ for the nitride layer, and $49{\AA}$ for the blocking oxide. The fabricated SONGS transistors show low programming voltage, fast erase speed, and relatively good retention and endurance.

  • PDF

A study on the fabrication and characteristics of the scaled MONOS nonvolatile memory devices for low voltage EEPROMs (저전압 EEPROM을 위한 Scaled MONOS 비휘발성 기억소자의 제작 및 특성에 관한 연구)

  • 이상배;이상은;서광열
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.727-736
    • /
    • 1995
  • This paper examines the characteristics and physical properties of the scaled MONOS nonvolatile memory device for low programming voltage EEPROM. The capacitor-type MONOS memory devices with the nitride thicknesses ranging from 41.angs. to 600.angs. have been fabricated. As a result, the 5V-programmable MONOS device has been obtained with a 20ms programming time by scaling the nitride thickness to 57.angs. with a tunneling oxide thickness of 19.angs. and a blocking oxide thickness of 20.angs.. Measurement results of the quasi-static C-V curves indicate, after 10$\^$6/ write/erase cycles, that the devices are degraded due to the increase of the silicon-tunneling oxide interface traps. The 10-year retention is impossible for the device with a nitride less than 129.angs.. However, the MONOS memory device with 10-year retentivity has been obtained by increasing the blocking oxide thickness to 47.angs.. Also, the memory traps such as the nitride bulk trap and the blocking oxide-nitride interface trap have been investigated by measuring the maximum flatband voltage shift and analyzing through the best fitting method.

  • PDF